бісектриса BH рівнобеодереного трикутника ABC ( АВ= BC), утворює з його.бічною стороною кут 60 . HM-висота трикутника HBC . знайдіть висоту HM, якщо АС=24 см
Все боковые грани правильной пирамиды образуют с плоскостью основания равные углы, а высота проходит через центр основания, который является центром вписанной и описанной около основания окружностей.
Двугранный угол здесь образован радиусом вписанной окружности и апофемой, как отрезками. перпендикулярными ребру основания в одной точке (по т. о трех перпендикулярах).
Радиус вписанной в квадрат окружности равен половине его стороны.
r=24:2=12 (см)
Соединив основание апофемы с центром основания ( основанием высоты пирамиды), получим прямоугольный треугольник.
При этом катеты- высота пирамиды и половина стороны основания - равны 12 см.
В параллелограмме abcd биссектриса угла a пересекает сторону bc в точке p ,bp:pc=4:3. периметр параллелограмма равен 110 см. найдите стороны параллелограмма
Объяснение:
Дано:
АВСD-параллелограмм ,
АР-биссектриса,
ВР/РС=4/3 , Р=110 см
Найти:
АВ, ВС, АС, СD.
Решение.
АР- биссектриса, значит ∠ВАР=∠РАD.Пусть одна часть х, тогда ВР=4х, ВС(4+3)*х=7х. По свойству противоположных сторон АD=7х.
Т.к. АD║ВС , АP-секущая , то накрест лежащие углы равны ∠DAP=∠ВКP ⇒ΔАВК-равнобедренный по признаку равнобедренного треугольника ⇒АВ=ВP=4х.
Высота правильной четырёхугольной пирамиды равна 12 см, а сторона основания равна 24 см. Вычисли двугранный угол при основании.
——————————————————
Основание правильной четырехугольной пирамиды – квадрат.
Все боковые грани правильной пирамиды образуют с плоскостью основания равные углы, а высота проходит через центр основания, который является центром вписанной и описанной около основания окружностей.
Двугранный угол здесь образован радиусом вписанной окружности и апофемой, как отрезками. перпендикулярными ребру основания в одной точке (по т. о трех перпендикулярах).
Радиус вписанной в квадрат окружности равен половине его стороны.
r=24:2=12 (см)
Соединив основание апофемы с центром основания ( основанием высоты пирамиды), получим прямоугольный треугольник.
При этом катеты- высота пирамиды и половина стороны основания - равны 12 см.
Следовательно, треугольник - равнобедренный. Острые углы равнобедренного прямоугольного треугольника равны 45º.⇒ Искомый угол равен 45º.
В параллелограмме abcd биссектриса угла a пересекает сторону bc в точке p ,bp:pc=4:3. периметр параллелограмма равен 110 см. найдите стороны параллелограмма
Объяснение:
Дано:
АВСD-параллелограмм ,
АР-биссектриса,
ВР/РС=4/3 , Р=110 см
Найти:
АВ, ВС, АС, СD.
Решение.
АР- биссектриса, значит ∠ВАР=∠РАD.Пусть одна часть х, тогда ВР=4х, ВС(4+3)*х=7х. По свойству противоположных сторон АD=7х.
Т.к. АD║ВС , АP-секущая , то накрест лежащие углы равны ∠DAP=∠ВКP ⇒ΔАВК-равнобедренный по признаку равнобедренного треугольника ⇒АВ=ВP=4х.
Р=АВ+ВС+СD+СD
4х+7х+4х+7х=110,
22х=110 , х=5 .
АВ=СD=4*5=20 (см),
ВС=СD=7*5=35 (см).