1.Площадь параллелограмма равна произведению стороны на проведенную к ней высоту,т.еS=ВС*АН(AH-высота,проведенная к ВС),отсюда сторона ВС находится делением площади на высоту.
ВС=35:7=5
2.Медиану прямоугольного треугольника можно рассчитать по формуле:
m = 0,5sqrt (a2 + b2), где m — длина медианы (m = 6 см), a — длина первого катета прямоугольного треугольника, b — длина второго катета прямоугольного треугольника.
sqrt (a2 + b2) = 2 * m = 2 * 6 = 12 см.
Гипотенузу прямоугольного треугольника можно рассчитать по формуле:
с = sqrt (a2 + b2) = 12 см.
ответ: Длина гипотенузы прямоугольного треугольника равна 12 см.
3.Пусть x - это больший острый угол, тогда x-200 - это найменьший острый угол, составим уравнение:
1.Площадь параллелограмма равна произведению стороны на проведенную к ней высоту,т.еS=ВС*АН(AH-высота,проведенная к ВС),отсюда сторона ВС находится делением площади на высоту.
ВС=35:7=5
2.Медиану прямоугольного треугольника можно рассчитать по формуле:
m = 0,5sqrt (a2 + b2), где m — длина медианы (m = 6 см), a — длина первого катета прямоугольного треугольника, b — длина второго катета прямоугольного треугольника.
sqrt (a2 + b2) = 2 * m = 2 * 6 = 12 см.
Гипотенузу прямоугольного треугольника можно рассчитать по формуле:
с = sqrt (a2 + b2) = 12 см.
ответ: Длина гипотенузы прямоугольного треугольника равна 12 см.
3.Пусть x - это больший острый угол, тогда x-200 - это найменьший острый угол, составим уравнение:
720-360=360
x+x-200=360
2x=560
x=280 (больший угол)
280 - 200 = 80 (меньший угол)
4.к этому номеру прикрепленно решение.
5.AB^2=Ak^2+AB^2( по теореме Пифагора ) , следовательно AB^2=144+25 , следовательно AB= 13
Sin A = KB/AB , sinA= 5/13
6.14см это сумма оснований
4 см высота
7х4=28 по формуле площади трапеции
7.1) в равностороннем треугольнике все высоты равны.
Верно.Это свойство высот равностороннего треугольника
2)точка пересечения медиан произвольного треугольника - это центр окружности, описаной около этого треугольника.
Неверно. Центром описанной около треугольника окружности является точка пересечения серединных перпендикуляров к сторонам треугольника
4)медиана, это отрезок соеденяющий середины двух сторон треугольника.
Неверно. Медиана - отрезок, соединяющий вершину треугольника с серединой противоположной стороны
5) треугольник со сторонами 6,8,9- не существует.
Неверно. Существует.
Треугольник существует только тогда, когда сумма любых двух его сторон больше третьей.
Проверим:
6+8>9, 14>9 (и)
8+9>6, 17>6 (и)
6+9>8, 14>8 (и)
6) треугольник со сторонами 3,4,5 -прямоугольный.
Верно. Он египетский.
Египетский треугольник - прямоугольный треугольник с соотношением сторон 3:4:5
ответ 1 и 6
8.Начертим трапецию и увидим, что ВРС и АРD - подобны ( по 2-м углам) затем составим пропорцию АD/BC = PD /BP, AD = 3,2*15/3 = 16, т.е ответ 16.
1
теорема косинусов
а)
ВС^2=AB^2+AC^2 - 2*AB*AC*cosA=11^2+8^2 - 2*11*8*cos60=121+64-2*88*1/2=97
BC=√97 см
б)
AC^2=AB^2+BC^2 - 2*AB*BC*cosB=13^2+7^2-2*13*7*cos60=169+49-2*13*7*1/2=127
АС=√127 см
2
теорема косинусов
а)
cos120= - cos60
NP^2=MN^2+MP^2 -2 MN*MP*cos120=7^2+15^2-2*7*15*(-cos60)=
=49+225-2*7*15*(-1/2)=379
NP=√379 см
б)
NP^2=
3
cos120= - cos60
а) меньшую диагональ (ВD)
лежит напротив острого угла <60
BD^2=6^2+8^2-2*6*8*cos60=36+64-2*48*(1/2)=52
BD=√52=2√13 см
б) большую диагональ (АС)
лежит напротив тупого угла <120
AC^2=6^2+8^2-2*6*8*cos120=36+64-2*48*(-1/2)=148
AC=√148=2√37 см
4
а) его стороны равны 8 мм и 10 мм, а одна из диагоналей равна 14 мм;
14^2=8^2+10^2 -2*8*10*cos<A
196=64+100 - 160*cos<A
32= - 160*cos<A
cos<A= - 32/160 =-1/5= -0.2
б) его стороны равны 12 дм и 14 дм, а одна из диагоналей равна 20 дм.
20^2=12^2+14^2 -2*12*14*cos<B
400=144+196-336* cos<B
60 =-336* cos<B
cos<B = - 60/336 = - 5/28
5
диагональ (d)и две стороны (a) (b) образуют треугольник
значит третий угол треугольника <A=180-20-60=100 град
дальше по теореме синусов
a/sin20=b/sin60=d/sinA=25/sin100
a=sin20*25/sin100=0.3420*25/0.9848=8.7 см
b= sin60*25/sin100=√3/2*25/0.9848=22 см
6
угол <С=180-<A-<B=180-30-40=110
по теореме синусов
AC/sin<B=BC/sin<A=AB/sin<C=2R
AC/sin40=BC/sin30=16/sin110
AC=sin40*16/sin110= 0.6428 *16/0.9397=10.94 см =11 см
BC= sin30*16/sin110=1/2*16/0.9397= 8.5 см
радиус описанной окружности
AB/sin<C=2R
R= AB/(2*sin<C)=16 / (2*sin110)=8/ sin110 = 8.5 см
7