А) BD ищется из треугольника ABD по теореме Пифагора: BD^2 = AB^2 + AD^2, откуда BD = 13 см.
Б) проведём высоту CH к основанию AD. Тогда ABCH - прямоугольник, AH = BC и CH = AB = 5 см. Треугольник CDH - прямоугольный с прямым углом CHD. Причём так как угол D равен 45 градусам, то угол DCH = 45 градусов в силу того, что сумма острых углов прямоугольного треугольника равна 90 градусам. Значит, треугольник CDH - равнобедренный. CH = DH = 5 см. Ищем CD по теореме Пифагора: CD^2 = CH^2 + DH^2, откуда CD = 5*sqrt(2) см. (Sqrt - это квадратный корень).
3) Треугольник ACH прямоугольный с прямым углом AHC. AH = AD - DH = 12 - 5 = 7 см. Ищем AC по теореме Пифагора: AC^2 = AH^2 + CH^2, откуда AC = sqrt(74) см.
Нам даны углы при большем основании трапеции, так как это оба острых угла. Продлим боковые стороны трапеции до пересечения в точке М. По свойству прямой, соединяющей середины оснований, она проходит также через точку М. Рассмотрим треугольник АМD. Это прямоугольный треугольник с углом <М=90°, так как сумма его углов при стороне АD равна 90°. В прямоугольном треугольнике медиана МН равна половине гипотенузы, то есть МН=НD=AD/2. МК=КС=ВС/2. Итак, (AD+BC)/2 = 14 см (средняя линия). Или AD/2+BC/2=14. МН=14-ВС/2 и MK=14-AD/2. МН-МК=8 (дано) или 14-ВС/2 - 14-AD/2 =8, отсюда AD-BC=16 см (1). AD+BC=28 см (дано) )2). Имеем систему двух уравнений. Сложим оба уравнения 2*AD=44 и AD=22 см. Тогда ВС =28-22=6 см. ответ: основания трапеции AD=22см и ВС=6см.
BD^2 = AB^2 + AD^2, откуда BD = 13 см.
Б) проведём высоту CH к основанию AD. Тогда ABCH - прямоугольник, AH = BC и CH = AB = 5 см.
Треугольник CDH - прямоугольный с прямым углом CHD.
Причём так как угол D равен 45 градусам, то угол DCH = 45 градусов в силу того, что сумма острых углов прямоугольного треугольника равна 90 градусам.
Значит, треугольник CDH - равнобедренный. CH = DH = 5 см.
Ищем CD по теореме Пифагора:
CD^2 = CH^2 + DH^2, откуда CD = 5*sqrt(2) см. (Sqrt - это квадратный корень).
3) Треугольник ACH прямоугольный с прямым углом AHC.
AH = AD - DH = 12 - 5 = 7 см.
Ищем AC по теореме Пифагора:
AC^2 = AH^2 + CH^2, откуда AC = sqrt(74) см.
Продлим боковые стороны трапеции до пересечения в точке М.
По свойству прямой, соединяющей середины оснований, она проходит также через точку М.
Рассмотрим треугольник АМD. Это прямоугольный треугольник с углом <М=90°, так как сумма его углов при стороне АD равна 90°.
В прямоугольном треугольнике медиана МН равна половине гипотенузы, то есть МН=НD=AD/2. МК=КС=ВС/2.
Итак, (AD+BC)/2 = 14 см (средняя линия). Или AD/2+BC/2=14.
МН=14-ВС/2 и MK=14-AD/2.
МН-МК=8 (дано) или 14-ВС/2 - 14-AD/2 =8, отсюда AD-BC=16 см (1).
AD+BC=28 см (дано) )2). Имеем систему двух уравнений. Сложим оба уравнения 2*AD=44 и AD=22 см. Тогда ВС =28-22=6 см.
ответ: основания трапеции AD=22см и ВС=6см.