В формулировке задания допущена ошибка и решение добавлено к задаче с такой (измененной) формулировкой: "Длина диагонали основания прямоугольного параллелепипеда равна 10 см , его длина 8 см , а угол между диагональю параллелепипеда и плоскостью основания равен 45 градусов. Определите объем прямоугольного параллелепипеда." Решение: Рассмотрим треугольник AC₁C (см. приложение): угол С₁СА - прямой, а угол С₁АС = 45° по условию. Значит, угол AC₁C = 45° и АС = СС₁ = 10 см. Рассмотрим треугольник ACD: угол ADC - прямой, АС =10 см, а АD = 8 см, значит, СD = см. Объем параллелепипеда равен произведению трех его измерений (AD, DC, CC₁): 8*6*10 = 480 см³. ответ: 480 см³
В формулировке задания допущена ошибка и решение добавлено к задаче с такой (измененной) формулировкой: "Длина диагонали основания прямоугольного параллелепипеда равна 10 см , его длина 8 см , а угол между диагональю параллелепипеда и плоскостью основания равен 45 градусов. Определите объем прямоугольного параллелепипеда." Решение: Рассмотрим треугольник AC₁C (см. приложение): угол С₁СА - прямой, а угол С₁АС = 45° по условию. Значит, угол AC₁C = 45° и АС = СС₁ = 10 см. Рассмотрим треугольник ACD: угол ADC - прямой, АС =10 см, а АD = 8 см, значит, СD = см. Объем параллелепипеда равен произведению трех его измерений (AD, DC, CC₁): 8*6*10 = 480 см³. ответ: 480 см³
Решение:
Рассмотрим треугольник AC₁C (см. приложение): угол С₁СА - прямой, а угол С₁АС = 45° по условию. Значит, угол AC₁C = 45° и АС = СС₁ = 10 см.
Рассмотрим треугольник ACD: угол ADC - прямой, АС =10 см, а АD = 8 см, значит, СD = см.
Объем параллелепипеда равен произведению трех его измерений (AD, DC, CC₁): 8*6*10 = 480 см³.
ответ: 480 см³
Решение:
Рассмотрим треугольник AC₁C (см. приложение): угол С₁СА - прямой, а угол С₁АС = 45° по условию. Значит, угол AC₁C = 45° и АС = СС₁ = 10 см.
Рассмотрим треугольник ACD: угол ADC - прямой, АС =10 см, а АD = 8 см, значит, СD = см.
Объем параллелепипеда равен произведению трех его измерений (AD, DC, CC₁): 8*6*10 = 480 см³.
ответ: 480 см³