1.P=2(a+b), пусть а=х, тогда 30=2х+8х 30=10х х=3, первая сторона 4*3=12м, вторая сторона ответ: 3см, 3см, 12см, 12см 3.Биссектриса угла А отсекает от прямоугольника равнобедренный треугольник АВЕ. Значит АВ=ВЕ=7см, ВС=7+3=10см. Периметр равен 2*(7+10)=34см. ответ: периметр = 34см 4.Меньшая диагональ АС=24см Угол А=60° Меньшая диагональ делит ромб на 2 треугольника: АВС и АСD Так как угол А= углу D= 60° , то треугольники равносторонние и сторона ромба =24 см 5.Периметр= 4а а=46:4=11,5см Площадь= а^2=11,5×11,5=132,25см^2
1) неизвестный отрезок является гипотенузой прямоугольного треугольника:
2) неизвестный отрезок является высотой, проведённой к основанию, в равнобедренном треугольнике. Как известно, высота, проведённая к основанию, в равнобедренном треугольнике является также медианой и биссектрисой. Следовательно неизвестный отрезок делит основание пополам и является катетом в прямоугольном треугольнике с гипотенузой равной 5 и катетом равным :
3) Здесь имеется три неизвестных отрезка, два из которых равны.
Начнём с высоты, опять же она проведена к основанию в равнобедренном треугольнике, а значит является и медианой и биссектрисой. А медиана проведённая к гипотенузе в прямоугольном треугольнике равна половине гипотенузы:
Нам известно, что оставшиеся неизвестные отрезки являются катетами в прямоугольном треугольнике и что они равны. Нам известна гипотенуза этого треугольника:
30=2х+8х
30=10х
х=3, первая сторона
4*3=12м, вторая сторона
ответ: 3см, 3см, 12см, 12см
3.Биссектриса угла А отсекает от прямоугольника равнобедренный треугольник АВЕ. Значит АВ=ВЕ=7см, ВС=7+3=10см. Периметр равен 2*(7+10)=34см.
ответ: периметр = 34см
4.Меньшая диагональ АС=24см
Угол А=60°
Меньшая диагональ делит ромб на 2 треугольника: АВС и АСD
Так как угол А= углу D= 60° , то треугольники равносторонние и сторона ромба =24 см
5.Периметр= 4а
а=46:4=11,5см
Площадь= а^2=11,5×11,5=132,25см^2
Объяснение:
Обозначим неизвестные отрезки за x
1) неизвестный отрезок является гипотенузой прямоугольного треугольника:
2) неизвестный отрезок является высотой, проведённой к основанию, в равнобедренном треугольнике. Как известно, высота, проведённая к основанию, в равнобедренном треугольнике является также медианой и биссектрисой. Следовательно неизвестный отрезок делит основание пополам и является катетом в прямоугольном треугольнике с гипотенузой равной 5 и катетом равным :
3) Здесь имеется три неизвестных отрезка, два из которых равны.
Начнём с высоты, опять же она проведена к основанию в равнобедренном треугольнике, а значит является и медианой и биссектрисой. А медиана проведённая к гипотенузе в прямоугольном треугольнике равна половине гипотенузы:
Нам известно, что оставшиеся неизвестные отрезки являются катетами в прямоугольном треугольнике и что они равны. Нам известна гипотенуза этого треугольника: