Получаетсяя, что AN=NB=1/4 AB Т.к. Эти отрезки лежат рядом, отрезок, соединяющий середины этих отрезков, равен 1/2 AN+1/2 NB = AN = NB = d AB = 4 NB = 4 d MN - 1/4 AB; ее середина (назовем ее Х) находится на расстоянии 1/8 d от точки М Середина отрезка АМ (назовем ее У) находится на расстоянии 1/4 от точки А или М Получается, что расстояние между точками У и Х = 1/8 d + 1/4 d Переведем дроби в одинаковый знаменатель: 1/8 d + 2/8 d = 3/8 d Надеюсь А вообще, Вам лучше нечертить рисунок к этой задаче, Все сразу станет намного понятней.
CM=MD и EM||BC, тогда по теореме Фалеса ( если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне) EM проходит через точку N.
AE=EM и EM||BC, тогда по теореме Фалеса ( если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне) EM проходит через точку K.
Следовательно: AK=CK и DN=BN
можно также доказать через треугольники ABC и DCB - средняя линия трапеции будет средней линией этих треугольников. Средняя линия треугольника делит стороны пополам, значит диагонали пересекаются пополам.
дана трапеция ABCD
EM - средняя линия
пересекает диагонали в точках К и N
AC и BD - диагонали
из свойств средней линии трапеции: EM||BC||AD
CM=MD и EM||BC, тогда по теореме Фалеса ( если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне) EM проходит через точку N.
AE=EM и EM||BC, тогда по теореме Фалеса ( если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне) EM проходит через точку K.
Следовательно: AK=CK и DN=BN
можно также доказать через треугольники ABC и DCB - средняя линия трапеции будет средней линией этих треугольников. Средняя линия треугольника делит стороны пополам, значит диагонали пересекаются пополам.