Боковое ребро и одна из сторон основания прямоугольного параллелепипеда 5 и 6 см, а его диагональ составляет с плоскостью основания угол 60 град. Найти площадь боковой, полной поверхности параллелепипеда.
Точки M, N и К являются точками пересечения медиан боковых граней тетраэдра. Найдите площадь треугольника MNK, если площадь основания тетраэдра равна 36 см².
DE, DF и DG - медианы. Значит EF, EG и FG - средние линии треугольника АВС и равны половинам соответственных сторон треугольника АВС. => треугольник EFG подобен треугольнику АВС с коэффициентом подобия k = 1/2. Площади подобных треугольников относятся как квадрат коэффициента их подобия =>
Sefg/Sabc =1/4. Sefg = (1/4)Sabc = 9cм².
Треугольники DEF и DMN, DFG и DNK, DEG и DMK подобны по признаку: "Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключённые между этими сторонами равны, то такие треугольники подобны", так как DM/DE = DN/DF = DK/DG = 2/3 (свойство точки пересечения медиан, которая делит медианы в отношении 2:1, считая от вершины).
Следовательно, k = 2/3. =>
MN/EF = NK/FG = MK/EG = 2/3. =>
Треугольники MNK и EFG подобны по признаку : "Если стороны одного треугольника пропорциональны сторонам другого треугольника, то такие треугольники подобны" с коэффициентом
Теорема - это высказывание, истинность которого необходимо доказать.
В теореме можно выделить 3 части:
1) преамбула. В ней описываются множества, относительно которых задана теорема. Это области определения высказывания А и высказывания В.
2) условия теоремы. Это предложение А или то что дано в теореме.
3) заключение теоремы. Это предложение В или то что нужно доказать в теореме.
Различают 4 вида теорем:
1. Данная теорема. Например: вертикальные углы равны. Если углы вертикальные, то они равны.
2. Теорема обратная данной. Например: если углы равны, то они вертикальные (данная теорема - ложна).
3. Теорема противоположная данной - Если углы не вертикальные, то они не равны (данная теорема ложна).
4. Теорема противоположная обратной - Если углы не равны, то они не вертикальные. (Истинная теорема)
Smnk = 4 см².
Объяснение:
Точки M, N и К являются точками пересечения медиан боковых граней тетраэдра. Найдите площадь треугольника MNK, если площадь основания тетраэдра равна 36 см².
DE, DF и DG - медианы. Значит EF, EG и FG - средние линии треугольника АВС и равны половинам соответственных сторон треугольника АВС. => треугольник EFG подобен треугольнику АВС с коэффициентом подобия k = 1/2. Площади подобных треугольников относятся как квадрат коэффициента их подобия =>
Sefg/Sabc =1/4. Sefg = (1/4)Sabc = 9cм².
Треугольники DEF и DMN, DFG и DNK, DEG и DMK подобны по признаку: "Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключённые между этими сторонами равны, то такие треугольники подобны", так как DM/DE = DN/DF = DK/DG = 2/3 (свойство точки пересечения медиан, которая делит медианы в отношении 2:1, считая от вершины).
Следовательно, k = 2/3. =>
MN/EF = NK/FG = MK/EG = 2/3. =>
Треугольники MNK и EFG подобны по признаку : "Если стороны одного треугольника пропорциональны сторонам другого треугольника, то такие треугольники подобны" с коэффициентом
k1 = 2/3. =>
Smnk = (k1)²·Sefg = (4/9)·9 = 4 cм².