Боковое ребро правильной треугольной пирамиды равно 20 и наклоне- но к основанию под углом в 30°. Найдите: 1) сторону основания; 2) сумму длин всех ребер пирамиды.
Немного переиначу - пусть D лежит на AB, DE II AC, CD и AE пересекаются в точке N. Я буду доказывать, что BN - медиана ABC. Нужно обозначить еще две точки - M - точка пересечения продолжения BN и AC, K - точка пересечения BN и DE. Треугольники DKN и MNC подобны, то есть MN/NK = CM/DK; точно также из подобия треугольников EKN и ANM получается MN/NK = AM/KE; если обозначить MN/NK = x; то CM = DK*x; AM = KE*x; то есть CM/AM = DK/KE; (1) Далее, поскольку DE II AB, то треугольники DKB и AMB подобны, и DK/AM = BK/BM; точно так же из подобия треугольников BKE и BMC следует KE/CM = BK/BM; если обозначить BK/BM = y; то DK = AM*y; KE = CM*y; то есть CM/AM = KE/DK; (2) Если перемножить равенства (1) и (2), получится (CM/AM)^2 = 1; то есть CM = AM; Вот так решается
ответ: площадь прямоугольника увеличилась в 4 раза
Объяснение:
Пусть а - ширина изначального прямоугольника, b - его длина. Тогда площадь такого прямоугольника рассчитаем по формуле: S1 = ab.
Теперь увеличим ширину прямоугольника в 2 раза, получаем 2а. Его длину увеличим в 2 раза, получим 2b. Таким образом, площадь нового прямоугольника будет: S2 = 2a * 2b = 4ab.
Чтобы узнать во сколько раз увеличилась площадь прямоугольника после увеличения его длины и ширины, разделим большую площадь на меньшую:
S1/S2 =4ab/ab = 4.
ответ: площадь прямоугольника увеличилась в 4 раза
Треугольники DKN и MNC подобны, то есть MN/NK = CM/DK; точно также из подобия треугольников EKN и ANM получается MN/NK = AM/KE; если обозначить
MN/NK = x; то CM = DK*x; AM = KE*x;
то есть CM/AM = DK/KE; (1)
Далее, поскольку DE II AB, то треугольники DKB и AMB подобны, и DK/AM = BK/BM; точно так же из подобия треугольников BKE и BMC следует KE/CM = BK/BM; если обозначить BK/BM = y; то DK = AM*y; KE = CM*y;
то есть CM/AM = KE/DK; (2)
Если перемножить равенства (1) и (2), получится (CM/AM)^2 = 1; то есть CM = AM; Вот так решается
ответ: площадь прямоугольника увеличилась в 4 раза
Объяснение:
Пусть а - ширина изначального прямоугольника, b - его длина. Тогда площадь такого прямоугольника рассчитаем по формуле: S1 = ab.
Теперь увеличим ширину прямоугольника в 2 раза, получаем 2а. Его длину увеличим в 2 раза, получим 2b. Таким образом, площадь нового прямоугольника будет: S2 = 2a * 2b = 4ab.
Чтобы узнать во сколько раз увеличилась площадь прямоугольника после увеличения его длины и ширины, разделим большую площадь на меньшую:
S1/S2 =4ab/ab = 4.
ответ: площадь прямоугольника увеличилась в 4 раза