В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
MasterHacker
MasterHacker
19.01.2023 00:02 •  Геометрия

боковые ребра правильные четырёх угольника пирамиды равно 15см сторана основания 24см Найдите S боковые S полн ​


боковые ребра правильные четырёх угольника пирамиды равно 15см сторана основания 24см Найдите S боко

Показать ответ
Ответ:
SoniaGradient
SoniaGradient
02.07.2021 11:00

1) Прямоугольный параллелепипед описан около цилиндра. радиус основания которого равен 4. а высота 5.                                                   Найти объем параллелепипеда

Все грани прямоугольного параллелепипеда -прямоугольники. Основания вписанного цилиндра - окружности, вписанные в основания параллелепипеда, а его высота является и высотой параллелепипеда. 

Если в прямоугольник вписана окружность - этот прямоугольник - квадрат. 

Стороны основания параллелепипеда равны диаметру оснований цилиндра. 

а=2r=8

Объем прямоугольного параллелепипеда равен произведению его трех измерений. 

V=S*H=8*8*5=320 (единиц объема)

----------------------

2) Радиус основания конуса равен 15, расстояние от центра до образующей равно 12. Найти площадь боковой поверхности конуса.

формула площади боковой поверхности конуса

S=πRL

Расстояние от центра основания до образующей - в данном случае высота прямоугольного треугольника ВОС, образованного высотой ВО  конуса, радиусом ОС и образующей ВС (она же гипотенуза треугольника ОВС)

∆ ОНС - египетский ( отношение катета и гипотенузц 3:5). Значит, НС=9 ( можно найти по т.Пифагора)

ОС - катет ∆ ОВС. 

Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и его проекцией на гипотенузу. 

. ОС²=ВС*НС

225=ВС*9

ВС=225:9=25

S=π*15*25=375 (ед. площади)

-----------------------------

В ΔABC: AC=BC=13, sin ∠A=12/13.  Hайти АВ

СН- высота ∆ АВС

АВ=2 АН

АН=АС*cos A

cos A=√(1-(12/13)² )=5/13

AH=5

АВ=5*2=10


Срисунком если можно 1) прямоугольный паралелипипед описан около цилиндра радиус основания которого
Срисунком если можно 1) прямоугольный паралелипипед описан около цилиндра радиус основания которого
0,0(0 оценок)
Ответ:
МаТеМаТиК200411
МаТеМаТиК200411
01.01.2021 11:04

1. Найти угол между векторами AС и АB.

\overrightarrow{AC}=(1-1;\;2-3;\;1-0)=(0;\;-1;\;1)\\ \\ \overrightarrow{AB}=(2-1;\;3-3;\;1-0)=(1;\;0;\;1)

|\overrightarrow{AC}|=\sqrt{0^2+(-1)^2+1^2} =\sqrt{2} \\ \\|\overrightarrow{AB}|=\sqrt{1^2+0^2+1^2} =\sqrt{2}

cos\angle CAB=\frac{\overrightarrow{AC}\cdot\overrightarrow{AB}}{|\overrightarrow{AC}|\cdot|\overrightarrow{AB}|}=\frac{0\cdot1+(-1)\cdot0+1\cdot1}{\sqrt{2}\cdot \sqrt{2} } =\frac{1}{2} \quad \Rightarrow\quad \angle CAB=arccos\frac{1}{2}=60^{\circ}

*Можно искать не косинус угла, а найти длину вектора BC, тогда ΔABC -- равносторонний и углы равны по 60°.

2. Найти координаты центра сферы и длину ее радиуса. Найти значение m.

Приведём уравнение к общему виду (x - x₀)² + (y - y₀)² + (z - z₀)² = R²:

x^2+y^2+z^2-2y+4z=11\\ \\ x^2+(y^2-2y+1)+(z^2+4z+4)-1-4=11\\ \\ x^2+(y-1)^2+(z+2)^2=16

Тогда O (x₀; y₀; z₀) -- центр сферы, O (0; 1; -2),

R² = 16  ⇒  R = 4

Если точка принадлежит сфере, то подставив её координаты в уравнение, получится верное равенство. Подставим точки A и B в уравнение сферы:

\left \{ {{m^2+(1-1)^2+(-2+2)^2=16,} \atop {(\sqrt{3} )^2+(m-6-1)^2+(2+2)^2=16}} \right. \\ \\ -\left \{ {{m^2=16,} \atop {m^2-14m+60=16}} \right. \\ \\ m^2- (m^2-14m-60)=16-16\\ \\ 14m+60=0\\ \\ m=-\frac{30}{7}

3. Найти уравнение плоскости α.

Ax + By + Cy + D = 0 -- общее уравнение плоскости.

n = (A; B; C) -- вектор нормали  ⇒ A = 1, B = 2, C = 3, тогда

\alpha:\;\; x + 2y+ 3z + D = 0

Если точка принадлежит плоскости, то подставив её координаты в уравнение, получится верное равенство:

3 + 2\cdot(-2)+ 3\cdot 4 + D = 0\\ \\ 11 =-D\\ \\ D=-11\\ \\ \alpha :\;\;x+2y+3z-11=0

4. Найти общее уравнение прямой.

Общее уравнение прямой представляет собой систему уравнений двух пересекающихся плоскостей. Решение этой системы есть пересечение плоскостей, то есть прямая.

Зададим прямую параметрически:

\left\{\begin{matrix}x=x_2+(x_2-x_1)\lambda,\\ y=y_2+(y_2-y_1)\lambda,\\ z=z_2+(z_2-z_1)\lambda;\end{matrix}\right\\\\\\ \left\{\begin{matrix}x=2+(2-1)\lambda,\\ y=0+(0-(-2))\lambda,\\ z=4+(4-3)\lambda;\end{matrix}\right\\\\\\ \left\{\begin{matrix}x=2+\lambda,\\ y=2\lambda,\\ z=4\lambda;\end{matrix}\right

Исключим параметр λ:

\left\{\begin{matrix}\lambda=x-2,\\ y=2(x-2),\\ z=4+(x-2);\end{matrix}\right\\\\ \\ \left\{\begin{matrix}y=2x-4,\\ z=x+2;\end{matrix}\right\\ \\\\\ \left\{\begin{matrix}y-2x+4=0,\\ z-x-2=0;\end{matrix}\right

Последняя система -- это общее уравнение прямой.

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота