(буду о-о-о-о- если мне ! ; -) )1. кут, вертикальний до кута при вершині рівнобедреного трикутника, дорівнює 68°. знайдіть кут між бічною стороною трикутника та медіаною, проведеною до основи.а)146°; б)68°; в)34°; г)73°.2. кут, суміжний із кутом при вершині рівнобедреного трикутника, дорівнює 76°. знайдіть кут між бічною стороною трикутника та висотою, опущеною на основу.
Данная пирамида не существует.
Объяснение:
Дано условие: Каждое боковое ребро пирамиды должно образовывать с плоскостью основания угол 60°. Такое условие возможно только при условии, что в основании лежит правильный многоугольник - многоугольник, у которого равны все стороны и все углы. Поскольку равнобокая трапеция не является правильным многоугольником, можно сказать, что данная пирамида невозможна. Однако, если представить, что лишь 2 боковых ребрa образуют с плоскостью основания угол 60°, то задача станет вполне решаемой.
Итак, представим пирамиду NABCD, где NO - h - , ∠NDC=∠NCD=60°, ∠ADB=90°, ∠BAD=90°. Из ΔАВD по частному случаю прямоугольных треугольников (30°, 60°, 90°):
AD=9, AB=18, BD=9√3; => DC = 18 - 4,5 - 4,5 = 9
Так как, по условию, ΔNDC - равносторонний, стороны ND= DC= NC= 9.
Исходя из теоремы о трёх перпендикулярах, получаем, что ∠ADC = ∠NCB = 90° (∠ADB= ∠ACB= 90°, ∠NOD= ∠NOC= 90°.
Из прямоугольных равнобедренных треугольников ΔNAD & ΔNBC, по частному случаю прямоугольных треугольников (45°, 45°, 90°):
NB = AN = 9√2
ответ: Боковые рёбра пирамиды, в основании которой лежит равнобокая трапеция, при условии, что ЛИШЬ 2 БОКОВЫХ РЕБРА ND и DC образуют с плоскостью основания угол 60°:
NA= NB = 9√2, ND= DC = 9.
Круг можно тремя разрезами разделить на 7 частей: Линия каждого разреза пересекается с двумя другими и получится 3•2 части, плюс часть, которая получится между ними (см. рисунок).
Блин также можно разделить на 7 частей, если его не сворачивать. Если первым разрезом поделить блин пополам, затем наложить одну половину на другую и двумя сквозными пересекающимися разрезами разделить эти половини еще на 4 части , то блин можно разделить на 8 частей.
Так как каравай имеет высоту, можно разделить его таким образом:
Первый разрез провести по высоте - получатся две круглые части.
Затем крестообразно провести еще два разреза от края до края и получить наибольшее количество частей, на которое его можно разделить - 8 частей.