Тангенс угла в прямоугольном треугольнике - это отношение противолежащего катета к прилежащему. Проведём дополнительные прямые линии так, чтобы получить прямоугольные треугольники, из которых можно будет найти катеты необходимых углов и воспользуемся формулами тангенса суммы и разности углов.
а)
tg∠A = BC / AC = 3/6 = 1/2
ctg∠A = AC / BC = 6/3 = 2
б)
tg∠B = AC / BC = 4/6 = 2/3
ctg∠B = BC / AC = 6/4 = 3/2
№2
Тангенс угла в прямоугольном треугольнике -это отношение противолежащего катета к прилежащему. Проведём дополнительные прямые линии так, чтобы получить прямоугольные треугольники, из которых можно будет найти катеты необходимых углов и воспользуемся формулами тангенса суммы и разности углов.
Треугольники называются равными, если их можно совместить наложением. Т.е. все вершины, стороны и углы одного треугольника совпадут с соответствующими вершинами, сторонами и углами другого треугольника. Очевидно, что если мы совместим вершины, то и остальные элементы треугольников совместятся.
Первый признак равенства треугольников: если 2 стороны и угол между ними одного треугольника соответственно равны 2 сторонам и углу между ними другого треугольника, то такие треугольники равны.
Дано: Обозначим вершины первого треугольника ABC, а второго - KLM. Пусть выполняются следующие условия: AB=KL AC=KM ∠A=∠K
Доказать, что треугольник ABC равен треугольнику KLM.
Д-во: Т.к. ∠A = ∠K, то угол K можно наложить на угол A так, что вершина угла K совместиться с вершиной угла A, сторона угла (KL) совместится со стороной угла (AB), а сторона угла (KM) совместиться со стороной угла (AC).
Т.к. отрезок AB равен отрезку KL, а лучи (AB) и (KL) совпадают, то точка K должна совместиться с точкой B. Аналогично, т.к. отрезок AC равен отрезку KM, то должны совместиться точки C и M.
Значит, все три вершины треугольника KLM совмещаются с тремя вершинами треугольника ABC. А значит, совмещаются и все остальные элементы этих треугольников.
А это и значит, что треугольник ABC равен треугольнику KLM.
Объяснение:
Тангенс угла в прямоугольном треугольнике - это отношение противолежащего катета к прилежащему. Проведём дополнительные прямые линии так, чтобы получить прямоугольные треугольники, из которых можно будет найти катеты необходимых углов и воспользуемся формулами тангенса суммы и разности углов.
а)
tg∠A = BC / AC = 3/6 = 1/2
ctg∠A = AC / BC = 6/3 = 2
б)
tg∠B = AC / BC = 4/6 = 2/3
ctg∠B = BC / AC = 6/4 = 3/2
№2
Тангенс угла в прямоугольном треугольнике -это отношение противолежащего катета к прилежащему. Проведём дополнительные прямые линии так, чтобы получить прямоугольные треугольники, из которых можно будет найти катеты необходимых углов и воспользуемся формулами тангенса суммы и разности углов.
tg(a-β)=tga-tgβ/1+tga×tgβ; tg(a+β)= tga+tgβ/1-tga×tgβ
a)tg ∠BAC = tg(∠BAD-∠CAD) =tg∠BAD- tg-∠CAD/1+tg∠BAD×tg∠CAD=∠BAD= BK/AK=5/5=1; tg∠CAD= CD/AD=3/6=1/2=1-1/2/1+1×1/2=1/2/3/2=1/3
ctg∠BAD=1/tg∠BAD=1/1/3
b) tg∠ABC=tg(∠CBD+∠KBA) =tg∠CBD+tg∠KBA/1-tg∠CBD×tg∠KBA=tg∠CBD=CD/BD=1/3; tg∠KBA=AK/BK=5/5=1=1/3+1/1-1×1/3=4/3/2/3=4/2=2
Очевидно, что если мы совместим вершины, то и остальные элементы треугольников совместятся.
Первый признак равенства треугольников: если 2 стороны и угол между ними одного треугольника соответственно равны 2 сторонам и углу между ними другого треугольника, то такие треугольники равны.
Дано:
Обозначим вершины первого треугольника ABC, а второго - KLM. Пусть выполняются следующие условия:
AB=KL
AC=KM
∠A=∠K
Доказать, что треугольник ABC равен треугольнику KLM.
Д-во:
Т.к. ∠A = ∠K, то угол K можно наложить на угол A так, что вершина угла K совместиться с вершиной угла A, сторона угла (KL) совместится со стороной угла (AB), а сторона угла (KM) совместиться со стороной угла (AC).
Т.к. отрезок AB равен отрезку KL, а лучи (AB) и (KL) совпадают, то точка K должна совместиться с точкой B.
Аналогично, т.к. отрезок AC равен отрезку KM, то должны совместиться точки C и M.
Значит, все три вершины треугольника KLM совмещаются с тремя вершинами треугольника ABC. А значит, совмещаются и все остальные элементы этих треугольников.
А это и значит, что треугольник ABC равен треугольнику KLM.
Ч.т.д.