Если внешний угол при вершине А равен 135 градусов, то внутренний угол А равен 180°-135° = 45°. Для определения стороны АС воспользуемся теоремой синусов. Сначала найдём угол С. sin C = (4*sin 45°)/6√2 = (4*1)/(√2*6√2) = 4/12 = 1/3. Угол С = arc sin(1/3) = 0,339837 радиан = 19,47122°. Находим угол В = 180°-45°-19,47122° = 115,5288°.
Сторону АС можно определить двумя 1) - по теореме синусов, 2) - по теореме косинусов.
Для определения стороны АС воспользуемся теоремой синусов.
Сначала найдём угол С.
sin C = (4*sin 45°)/6√2 = (4*1)/(√2*6√2) = 4/12 = 1/3.
Угол С = arc sin(1/3) = 0,339837 радиан = 19,47122°.
Находим угол В = 180°-45°-19,47122° = 115,5288°.
Сторону АС можно определить двумя
1) - по теореме синусов,
2) - по теореме косинусов.
1) АC = (sinB*6√2)/sin45° = ( 0,902369*6√2)/(1/√2) = 12* 0,902369 =
= 10,82843.
2) AC = √(4²+(6√2)²-2*4*6√2*cosB) = √(16+72-48√2*( -0,43096)) =
= √(88+29,2548) = √117,2548 = 10,82843.
авсd - параллелограмм.
диагонали параллелограмма точкой пересечения делятся пополам.
пусть о - точка пересечения ас и вd.
тогда о - середина ас и середина вd.
найдем координаты середины диагонали ас:
х₀ = (3 + 1)/2 = 2;
у₀ = (- 4 + 2)/2 = - 1;
z₀ = (7 + (- 3))/2 = 2.
эти же координаты имеет середина диагонали вd.
найдем координаты d(х; у; z):
(- 5 + х)/2 = 2 (3 + у)/2 = - 1 (- 2 + z)/2 = 2
- 5 + х = 2 · 2 3 + у = - 1 · 2 - 2 + z = 2 · 2
- 5 + х = 4 3 + у = - 2 - 2 + z = 4
х = 4 + 5 у = - 2 - 3 z = 4 + 2
х = 9 у = - 5 z = 6