Угол АОС - центральный, равен длине дуги, на которую он опирается. Опирается на АС, а она относится к Углу В, градусная мера которого 60. значит длина дуги АС = 60*2=120. <AOC=120. В сумме углы A + B + C =180 (свойство треугольника). Угол В нам дан, значит мы можем найти сумму двух других: A+C=180-B A+C=120. Нам дано отношение 5 к 7, но это отношение дуг. Значит умножим на 2 сумму углов, чтобы найти сумму длин дуг и разделим на на эти коэффициенты. 5k+7k=120*2 12k=240 k=20 Нам нужно найти угол А, а это половина дуги BC. BC=5k BC=50*20=100 100\2=50=угол А Тоже самое с углом С AB=7k AB=7*20=140 140\2=70=угол С
Сделаем проверку, <A+<B+<C=180 50+60+70=180. Всё верно
cosВ =3/5= CВ/АВ (косинус угла - отношение прилежащего катета к гипотенузе) Пусть СВ=3Х, АВ=5Х. По Пифагору (5Х)²-(3Х)² = АС². Отсюда Х=1. Высота, проведенная из вершины прямого угла на гипотенузу, делит данный тр-к на два подобных друг другу и исходному. Из подобия имеем соотношение: АВ/СВ=СВ\НВ. Откуда НВ= СВ²/АВ = 9/5 = 1,8. 2) Синус угла это отношение противолежащего катета к гипотенузе, то есть СВ/АВ=3/5. Их подобия тр-ков имеем: АВ/СВ=СВ/НВ или АВ= СВ²/НВ. СВ=3Х, АВ=5Х подставляем: 5Х=9Х²/1,8, откуда Х=1. Значит АВ = 5.
В сумме углы A + B + C =180 (свойство треугольника). Угол В нам дан, значит мы можем найти сумму двух других:
A+C=180-B
A+C=120.
Нам дано отношение 5 к 7, но это отношение дуг. Значит умножим на 2 сумму углов, чтобы найти сумму длин дуг и разделим на на эти коэффициенты.
5k+7k=120*2
12k=240
k=20
Нам нужно найти угол А, а это половина дуги BC. BC=5k
BC=50*20=100
100\2=50=угол А
Тоже самое с углом С
AB=7k
AB=7*20=140
140\2=70=угол С
Сделаем проверку, <A+<B+<C=180
50+60+70=180. Всё верно
ответ: <A=50, <C=70. <AOC=120
Пусть СВ=3Х, АВ=5Х. По Пифагору (5Х)²-(3Х)² = АС². Отсюда Х=1.
Высота, проведенная из вершины прямого угла на гипотенузу, делит данный тр-к на два подобных друг другу и исходному. Из подобия имеем соотношение:
АВ/СВ=СВ\НВ. Откуда НВ= СВ²/АВ = 9/5 = 1,8.
2) Синус угла это отношение противолежащего катета к гипотенузе, то есть СВ/АВ=3/5. Их подобия тр-ков имеем: АВ/СВ=СВ/НВ или АВ= СВ²/НВ.
СВ=3Х, АВ=5Х подставляем: 5Х=9Х²/1,8, откуда Х=1. Значит АВ = 5.