Центр окружности лежит на основании равнобокой трапеции окружность касается другого основания и боковых сторон трапеции в их середине найдите углы трапеции это
Рассмотрим параллелограмм ABCD, в котором диагональ AC соединяет вершины A и C: так как основания параллелограмма параллельны, то углы 1 и 2 равны как накрест лежащие углы. Рассмотрим треугольники асб и адс, они равны по первому признаку подобия треугольников ( две стороны и угол между ними), так как диагональ АС - общая сторона для этих двух треугольников, а стороны сб и да равны как противоположные стороны параллелограмма. Отсюда следует что диагональ делит параллелограмм на два равных треугольника. Сейчас добавлю чертеж
Как известно, диагонали точкой пересечения делятся пополам, а противоаоложные стороны пар-мма равны. Следовательно, противоположные по отношению друг к другу треугольники равны(по 3-ему признаку равенства треугольников), и площади их тоже равны.
Осталось доказать, что площади двух "смежных" треугольников равны. Рассмотрим их. Одна сторона у них общая, примем за основание сторону, лежащую на диагонали. Эти стороны у треугольников равны, т.к. точкой пересечения, повторюсь, диагонали делятся пополам. Прощадь треугольника у нас равна половине основания, умноженного на высоту, проведенную к основанию. Проведи к основаниям треугольников высоту - это будет один и тот же отрезок.
Мы получили - основания у треугольников равны, высоты равны.
Как известно, диагонали точкой пересечения делятся пополам, а противоаоложные стороны пар-мма равны. Следовательно, противоположные по отношению друг к другу треугольники равны(по 3-ему признаку равенства треугольников), и площади их тоже равны.
Осталось доказать, что площади двух "смежных" треугольников равны. Рассмотрим их. Одна сторона у них общая, примем за основание сторону, лежащую на диагонали. Эти стороны у треугольников равны, т.к. точкой пересечения, повторюсь, диагонали делятся пополам. Прощадь треугольника у нас равна половине основания, умноженного на высоту, проведенную к основанию. Проведи к основаниям треугольников высоту - это будет один и тот же отрезок.
Мы получили - основания у треугольников равны, высоты равны.
Теорема доказана.