1) Если прямая касательная окружности, то она имеет две общие точки с окружностью.
-Нет
2) Если прямая и окружность имеют общую точку, то прямая является касательной окружности.
-Нет
3) Прямая и окружность могут иметь только две общие точки.
-Нет
1) Выбери хорду окружности (возможно несколько вариантов ответов): ON KL MN NR OK
-MN и KL
2) Справедливы-ли данные суждения?
-Да(Ну, нечем объяснить. Уж простите)
3) Которое из утверждений неверно? Радиус окружности, вписанной в равносторонний треугольник, можно вычислить: r=h:3 Центр окружности, описанной около равнобедренного треугольника, находится на большей стороне треугольника Центр окружности, описанной около треугольника, находится на пересечении серединных перпендикуляров.
1. прямая может касаться окр-ти, может пересекать окр-ть, может не касаться окр-ти.
2. касательная перпендикулярна к радиусу; отрезки касательных,проведенных из одной точки,не лежащей в и на окр-ти, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.
3. 360 градусов.
4. градусная мера центр. угла равна дуге,которую образуют те же две точки, лежащие на окр-ти
5. вписанный угол равен половине деги или половине центр. угла.
6. 180 градусов всегда.
7. Если две хорды орокружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.
8.Биссектриса внутреннего угла треугольника делит противолежащую сторону на отрезки, пропорциональные прилегажащим сторонам: x/y=a/b. Точка пересечения биссектрис треугольника является центром окружности, вписанной в этот треугольник.
9. при пересечении серединных перпендикуляров образуется точка,которая является центром описанной окружности около данной фигуры.
10. точка пересеч. бисскетрис,медиан, высот и серединных перпендикуляров.
11. вписанной окр-ю в треугольник называется окружность,которая касается сторон данного треугольника.
12. точка пересеч. биссектрис.
13. только тогда,когда суммы противоположных сторон равны.
14. ответ выше^
15.S=1/2*r*Р,где Р - периметр
16.если все вершины многоуг-ка лежат на окр-ти, то окр-ть называется опписанной около данной фигуры.
17.точки пересеч. серединных перпендикуляров.
18. Если в выпуклом четырехугольнике,суммы противоположных сторон равны,то в этотчетырехугольник можно вписать окружность.
1) Если прямая касательная окружности, то она имеет две общие точки с окружностью.
-Нет
2) Если прямая и окружность имеют общую точку, то прямая является касательной окружности.
-Нет
3) Прямая и окружность могут иметь только две общие точки.
-Нет
1) Выбери хорду окружности (возможно несколько вариантов ответов): ON KL MN NR OK
-MN и KL
2) Справедливы-ли данные суждения?
-Да(Ну, нечем объяснить. Уж простите)
3) Которое из утверждений неверно? Радиус окружности, вписанной в равносторонний треугольник, можно вычислить: r=h:3 Центр окружности, описанной около равнобедренного треугольника, находится на большей стороне треугольника Центр окружности, описанной около треугольника, находится на пересечении серединных перпендикуляров.
-2
Объяснение:
-Потому как 1 и 3 верно.
4. Дано: ∢ OAC = 45°. Вычисли: ∢ OBA = °; ∢ AOC = °
-Центр вписанной в угол окружности лежит на биссектрисе угла
углы: OAC = OAB = 45°
радиусы в точку касания перпендикулярны касательной.
углы: ABO = АСО = 90°
сумма острых углов прямоугольного треугольника = 90°
-углы: АОС = АОВ = 90-45 = 45°
(Простите, все что знал.)
1. прямая может касаться окр-ти, может пересекать окр-ть, может не касаться окр-ти.
2. касательная перпендикулярна к радиусу; отрезки касательных,проведенных из одной точки,не лежащей в и на окр-ти, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.
3. 360 градусов.
4. градусная мера центр. угла равна дуге,которую образуют те же две точки, лежащие на окр-ти
5. вписанный угол равен половине деги или половине центр. угла.
6. 180 градусов всегда.
7. Если две хорды орокружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.
8.Биссектриса внутреннего угла треугольника делит противолежащую сторону на отрезки, пропорциональные прилегажащим сторонам: x/y=a/b.
Точка пересечения биссектрис треугольника является центром окружности, вписанной в этот треугольник.
9. при пересечении серединных перпендикуляров образуется точка,которая является центром описанной окружности около данной фигуры.
10. точка пересеч. бисскетрис,медиан, высот и серединных перпендикуляров.
11. вписанной окр-ю в треугольник называется окружность,которая касается сторон данного треугольника.
12. точка пересеч. биссектрис.
13. только тогда,когда суммы противоположных сторон равны.
14. ответ выше^
15.S=1/2*r*Р,где Р - периметр
16.если все вершины многоуг-ка лежат на окр-ти, то окр-ть называется опписанной около данной фигуры.
17.точки пересеч. серединных перпендикуляров.
18. Если в выпуклом четырехугольнике,суммы противоположных сторон равны,то в этотчетырехугольник можно вписать окружность.
19. когда 4уг-к равнобедренный.
20. в середине гипотенузы.