чему равны координаты точки, симетричной точки А(-3;4) относительно а) оси ОХ; б) оси ОУ; в) начала координат
2) при параллельном переносе точки А(2;2) переходит в точку В(-2;0). В какую точку переходит начало координат
3) Найдите вектор С, равный сумме векторов А и В и обсолютную величину вектора С, если: а) А(2;-5); В(-3;7) б) А(3;6); Б(5;4)
4) Постройте вектор С=А+В, если:
а) если А и В выходят из одной точки
б) если А и В не выходят из одной точки
Зададим сразу расстояние одной из прямых , пусть A1D1 , чтобы не вписывать множество переменных для произвольного шестиугольника , определим координаты 5 вершин произвольным образом , учитывая условно заданные расстояние и выпуклость , положим что
A(0,0) , B(3,0) , C(5,sqrt(12)) , D(3,7) , E(-2,8) , F(a,b)
При этом AB=3 , BC=4 , ED=5.
Тогда
A1(3/2,0)
B1(4, sqrt(3))
C1(4, 7/2+sqrt(3))
D1(1/2, 15/2)
E1((a-2)/2 , (b+8)/2)
F1(a/2, b/2)
Из условия A1D1=B1E1=F1C1 , получаем
(a-10)^2+(b+8-sqrt(12))^2=(a-8)^2+(b-7-sqrt(12))^2
откуда b=2a/15+(20*sqrt(3)-17)/10
Через скалярные произведение векторов найдём угол между векторами B1E1 и A1D1
cosa=(20-2a+15(b+8-sqrt(12)))/229
Подставляя найденный b и преобразовывая , получаем что cosa=1/2 или a=60 гр.
ответ 60 градусов .
24 : 4 = 6 (см) - сторона ромба.
Проведём меньшую диагональ, ромб разделился на 2 равнобедренных треугольника.
Диагональ ромба делит угол 120° пополам, 120 : 2 = 60°
Рассмотрим один из треугольников. Диагональ ромба - это основание треугольника. Углы при основании равнобедренного треугольника равны,
⇒ углы при основании Δ-ка = по 60°. Сумма углов Δ-ка = 180°,значит
третий угол в рассматриваемом Δ-ке = 180 - 60 - 60 = 60°.
Следовательно, что у нас не только равнобедренный, но и равносторонний Δ. А у равностороннего треугольника все стороны
равны, поэтому основание треугольника ( меньшая диагональ ромба)
= стороне ромба = 6см
ответ: 6см - меньшая диагональ ромба.