Итак. Раз у нас прямоугольник, то все углы его прямы и равны 90(по опр.). По этому мы можем спокойно найти угол, который находится между большей стороной и диагональю: 90-53=37.
И все углы, образованные диагональю в этом прямоугольнике будут равны либо 53, либо 37(в зависимости от расположения: накрест лежащие углы равны). Что из них больше, решайте сами.
Если вам нужны внешние углы, которые, опять же, образует диагональ с прямоугольником: то они равны сумме углов, не смежных с ними(в треугольниках, естественно) Углы в треугольниках вам известны: 90,37 и 53. Значит один внешний угол будет равняться: 53+90=143, а второй: 37+90=127.
Итак, все углы: 37, 53, 143, 127.(Ибо запрос: "Найти больший из углов образованный диагональю прямоугольника" более чем некорректен)
Пусть АС=4х, ВD=6x, тогда отношение AC:BD=4x:6x=2:3
Диагонали ромба взаимно перпендикулярны, в точке пересечения делятся пополам и разбивают ромб на 4 равных прямоугольных треугольника. По теореме Пифагора сторона ромба а²=(d₁/2)²+(d₂/2)²=(2x)²+(3x)²=13x² а=х√13
Из формул для вычисления площади треугольника АОВ S(Δ AOB)=AO·OB/2 и S(Δ AOB)=AB·OE/2
находим OE AO·OB=AB·OE OE=2x·3x/х√13=6х/√13.
Из треугольника АОЕ по теореме Пифагора AE²=AO²-EO²=(2x)²-(6x/√13)²=4x²-(36x²/13)=(52x²-36x²)/13=16x²/13 AE=4x/√13
S(Δ AOE)=AE·OE/2
(4x/√13)·(6x/√13)=54 24x²=54·13 x²=9·13/4
S(ромба)=a·h=(x√13)·2OE=(x√13)·2·(6x/√13)=12x²=12·(9·13/4)=27·13= =351 кв. ед
Итак. Раз у нас прямоугольник, то все углы его прямы и равны 90(по опр.). По этому мы можем спокойно найти угол, который находится между большей стороной и диагональю: 90-53=37.
И все углы, образованные диагональю в этом прямоугольнике будут равны либо 53, либо 37(в зависимости от расположения: накрест лежащие углы равны). Что из них больше, решайте сами.
Если вам нужны внешние углы, которые, опять же, образует диагональ с прямоугольником: то они равны сумме углов, не смежных с ними(в треугольниках, естественно) Углы в треугольниках вам известны: 90,37 и 53. Значит один внешний угол будет равняться: 53+90=143, а второй: 37+90=127.
Итак, все углы: 37, 53, 143, 127.(Ибо запрос: "Найти больший из углов образованный диагональю прямоугольника" более чем некорректен)
Диагонали ромба взаимно перпендикулярны, в точке пересечения делятся пополам и разбивают ромб на 4 равных прямоугольных треугольника.
По теореме Пифагора сторона ромба
а²=(d₁/2)²+(d₂/2)²=(2x)²+(3x)²=13x²
а=х√13
Из формул для вычисления площади треугольника АОВ
S(Δ AOB)=AO·OB/2
и
S(Δ AOB)=AB·OE/2
находим OE
AO·OB=AB·OE
OE=2x·3x/х√13=6х/√13.
Из треугольника АОЕ по теореме Пифагора
AE²=AO²-EO²=(2x)²-(6x/√13)²=4x²-(36x²/13)=(52x²-36x²)/13=16x²/13
AE=4x/√13
S(Δ AOE)=AE·OE/2
(4x/√13)·(6x/√13)=54
24x²=54·13
x²=9·13/4
S(ромба)=a·h=(x√13)·2OE=(x√13)·2·(6x/√13)=12x²=12·(9·13/4)=27·13=
=351 кв. ед