1. Расстояние между двумя параллельными плоскостями - перпендикуляр (кратчайшее расстояние). Следовательно: если точка находится на расстоянии 3 ед от одной из них, то расстояние до второй - (8-3)=5 ед.
2. Треугольники, образованные наклонными, их проекциями и вертикалью а - равнобедренные (углы при основании по 45°) ⇒ длина проекции - а;
треугольник образованный двумя проекциями с длиной а и отрезком, соединяющий их концы, равнобедренный. Угол при вершине 120° (по условию). Тогда углы при основании -
(180-120):2=30°;
высота, проведенная из вершины получившегося треугольника равна а/2 (сторона лежащая против угла 30°);
расстояние между концами наклонных равно удвоенной длине катета образованного высотой (а/2), гипотенузой (а) и половиной основания - √(а²-(а/2)²)=√(3а²/4)=а√3/2;
расстояние между концами наклонных 2*а√3/2=а√3 ед.
Задача решается так, в силу симметрии высота равнобедренного треугольника проходит через центр описанной окружности и заданные 7 сантиметров - часть (или продолжение) высоты от центра окружности до основания. Далее расстояние от центра окружности до любой вершины треугольника - ее радиус - 25 см. Построим треугольник на 7 см части высоты и половине основания (у равнобедренного тр-ка высота и медиана совпадает) - получим прямоугольтый треугольник с гипотенузой 25 см, и катетами 7 см и половина основания, отсюда по т. Пифагора находим половину основания = корень (25*25-7*7)=24 см, полная высота исходного треугольника как нетрудно убедиться либо 7+25=32 см, либо 25-7=18 см, тогда произведение оных 24 на 32 см даст площадь исходного треугольника 768 см^2, и во втором случае 24 на 18 = 432 см^2 з
1. 5 ед.
2. а√3 ед
Объяснение:
1. Расстояние между двумя параллельными плоскостями - перпендикуляр (кратчайшее расстояние). Следовательно: если точка находится на расстоянии 3 ед от одной из них, то расстояние до второй - (8-3)=5 ед.
2. Треугольники, образованные наклонными, их проекциями и вертикалью а - равнобедренные (углы при основании по 45°) ⇒ длина проекции - а;
треугольник образованный двумя проекциями с длиной а и отрезком, соединяющий их концы, равнобедренный. Угол при вершине 120° (по условию). Тогда углы при основании -
(180-120):2=30°;
высота, проведенная из вершины получившегося треугольника равна а/2 (сторона лежащая против угла 30°);
расстояние между концами наклонных равно удвоенной длине катета образованного высотой (а/2), гипотенузой (а) и половиной основания - √(а²-(а/2)²)=√(3а²/4)=а√3/2;
расстояние между концами наклонных 2*а√3/2=а√3 ед.
Далее расстояние от центра окружности до любой вершины треугольника - ее радиус - 25 см.
Построим треугольник на 7 см части высоты и половине основания (у равнобедренного тр-ка высота и медиана совпадает) - получим прямоугольтый треугольник с гипотенузой 25 см, и катетами 7 см и половина основания, отсюда по т. Пифагора находим половину основания = корень (25*25-7*7)=24 см, полная высота исходного треугольника как нетрудно убедиться либо 7+25=32 см, либо 25-7=18 см, тогда произведение оных 24 на 32 см даст площадь исходного треугольника 768 см^2, и во втором случае 24 на 18 = 432 см^2
з