Через кінці м і n та точку к відрізка mn який не перетинає площину а проведено прямі які перпендикулярні до площини а та перетинають її в точках м1, n1 і k1 відповідно. знайдіть відрізок nn1, якщо mm1=14, kk1=10 mk: kn=3: 5
ABCD- квадрат. BD⊥AC, BD пересекает AC в точке O, АО=СО, BO=DO.
Угол 45° между плоскостью основания и плоскостью сечения - угол между отрезками, проведенными в плоскости основания и сечения перпендикулярно к диагонали BD в точке О. .
Проведем из О перпендикулярно ВD луч до пересечения в точке К с продолжением СС1.
В прямоугольном треугольнике∠КОС=45°, ⇒ угол ОКС =45° и ∆ КСО - равнобедренный .
ОС=DС•sin45°=8•√2/2=4√2
СK=ОC=4√2.
ОК=ОС:sin45°=4√2:2=8 см
Прямоугольные ∆KHC1~∆KOC по общему углу при К.
КС1=KC-CC1=4√2-3√2=√2
k=KC1/KC=√2:4√2=1/4 Тогда КН=КO•1/4,
HO=KO•3/4=8•3/4=6 см
В сечении MT||BD. Четырехугольник ВМТD- трапеция. ОН - её высота.
Диагонали квадрата - биссектрисы его углов. ABD=DBA=45°
ВD=AB:sin45°=8:√2/2=8√2
∆КМТ~∆KBD,
MT=8√2:4=2√2 см
Площадь трапеции равна произведению полусуммы оснований на высоту.
Углы вписанного в окружность треугольника - вписанные. Вписанный угол измеряется половиной дуги, на которую он опирается.
Полная окружность содержит 360°.
◡ВАС=360°-80°=280°
АВ:АС=4:3
Примем коэффициент этого отношения равным х.
Дуга ВАС состоит из ◡АВ+◡АС и равна .
4х+3х=7х
х=280°:7=40° – содержит каждая часть ◡ВАС
◡АС=3•40°=120°
◡АВ=4•40°=160°
Угол А опирается на дугу ВС и равен ее половине:
∠А=80°:2=40°
Угол В опирается на дугу АС и равен ее половине:
∠В=120:2=60°
Угол С опирается на дугу АВ и равен ее половине:
∠С=160°:2=80°
ABCD- квадрат. BD⊥AC, BD пересекает AC в точке O, АО=СО, BO=DO.
Угол 45° между плоскостью основания и плоскостью сечения - угол между отрезками, проведенными в плоскости основания и сечения перпендикулярно к диагонали BD в точке О. .
Проведем из О перпендикулярно ВD луч до пересечения в точке К с продолжением СС1.
В прямоугольном треугольнике∠КОС=45°, ⇒ угол ОКС =45° и ∆ КСО - равнобедренный .
ОС=DС•sin45°=8•√2/2=4√2
СK=ОC=4√2.
ОК=ОС:sin45°=4√2:2=8 см
Прямоугольные ∆KHC1~∆KOC по общему углу при К.
КС1=KC-CC1=4√2-3√2=√2
k=KC1/KC=√2:4√2=1/4 Тогда КН=КO•1/4,
HO=KO•3/4=8•3/4=6 см
В сечении MT||BD. Четырехугольник ВМТD- трапеция. ОН - её высота.
Диагонали квадрата - биссектрисы его углов. ABD=DBA=45°
ВD=AB:sin45°=8:√2/2=8√2
∆КМТ~∆KBD,
MT=8√2:4=2√2 см
Площадь трапеции равна произведению полусуммы оснований на высоту.
S=(MT+BD)•OH:2=((2√2+8√2)•6:2=30 см*