Через кінець А відрізка АВ проведено площину а. Через кінець В і точку С відрізка АВ проведено параелльні прямі які перетинають площину а в точках М і N відповідно. Знайдіть довжину відрізка CN якщо АС : BC= m: n BM=a
Тк ABCD - ромб, то все стороны = 10 см. угол А =С=60 градусам, угол В=D=120 градусам. BD - диагональ = 10 см. В ромбе диагонали перпендикулярны, точкой пересечения делятся пополам, являются биссектрисами углов; следовательно угол DBC = 60 градусам. О - точка пересечения диагоналей, ВО=ОD=5 см. Треуг. BOC - прямоугольный, значит СО можно найти по т. Пифагора. Диагональ СA = 2СО. Потом просто находишь по формуле площадь ромба ( площадь ромба равна полусумме произведения его диагоналей)
В расчетах могла ошибиться, но ход решения должен быть верный.
Так как в трапеции угол А =60, угол ABD=90, то угол ADB=30. Так как BD биссектриса угла D, то угол D=60. Угол А равен углу D, значит трапеция равнобедренная, т. е. AB=CD. Сумма углов трапеции 360, значит угол B=360-(60+60)/2=120. Угол CBD=угол B-угол ABD=120-90=30. Угол BDC тоже равен 30 (т. к. BD биссектриса) , значит треугольник BCD равнобедренный, BC=CD=AB. Если провести высоту BH, то в треугольнике ABH угол А=60, AHB=90, следовательно угол ABH=30. В прямоугольном треугольнике против угла в 30 лежит катет, равный половине гипотенузы, AH=1/2 AB. Значит AD=BC+2AH=BC+AB=2AB. Периметр=AB+BC+CD+AD=AB+AB+AB+2AB=5AB. AB=Периметр/5, AB=20/5=4. AD=2AB=2*4=8
Тк ABCD - ромб, то все стороны = 10 см. угол А =С=60 градусам, угол В=D=120 градусам. BD - диагональ = 10 см. В ромбе диагонали перпендикулярны, точкой пересечения делятся пополам, являются биссектрисами углов; следовательно угол DBC = 60 градусам. О - точка пересечения диагоналей, ВО=ОD=5 см. Треуг. BOC - прямоугольный, значит СО можно найти по т. Пифагора. Диагональ СA = 2СО. Потом просто находишь по формуле площадь ромба ( площадь ромба равна полусумме произведения его диагоналей)
В расчетах могла ошибиться, но ход решения должен быть верный.
Так как BD биссектриса угла D, то угол D=60. Угол А равен углу D, значит трапеция равнобедренная, т. е. AB=CD.
Сумма углов трапеции 360, значит угол B=360-(60+60)/2=120.
Угол CBD=угол B-угол ABD=120-90=30.
Угол BDC тоже равен 30 (т. к. BD биссектриса) , значит треугольник BCD равнобедренный, BC=CD=AB.
Если провести высоту BH, то в треугольнике ABH угол А=60, AHB=90, следовательно угол ABH=30. В прямоугольном треугольнике против угла в 30 лежит катет, равный половине гипотенузы, AH=1/2 AB. Значит AD=BC+2AH=BC+AB=2AB.
Периметр=AB+BC+CD+AD=AB+AB+AB+2AB=5AB.
AB=Периметр/5, AB=20/5=4.
AD=2AB=2*4=8