Через кінець радіуса сфери проведено площину під кутом 60 градусів до цього радіуса. Знайдіть площину сфери , якщо довжина лінії перетину сфери і площини дорівнює 6пі см. наперед дякую
Известно, что прямая пересекает плоскость, если она не принадлежит этой плоскости и не параллельна ей. Следуя приведенному ниже алгоритму, найдем точку пересечения прямой a с плоскостью общего положения α, заданной следами h0α, f0α.
Алгоритм
Через прямую a проводим вс фронтально-проецирующую плоскость γ. На рисунке обозначены её следы h0γ, f0γ.
Строим проекции прямой AB, по которой пересекаются плоскости α и γ. В данной задаче точка B' = h0α ∩ h0γ, A'' = f0α ∩ f0γ. Точки A' и B'' лежат на оси x, их положение определяется по линиям связи.
Прямые a и AB пересекаются в искомой точке K. Её горизонтальная проекция K' = a' ∩ A'B'. Фронтальная проекция K'' лежит на прямой a''.
Точка пересечения прямой и плоскости
Алгоритм решения останется тем же, если пл. α будет задана параллельными, скрещивающимися прямыми, отсеком фигуры или другими возможными .
Видимость прямой a относительно плоскости α. Метод конкурирующих точек
Определение видимости прямой
Отметим на чертеже фронтально-конкурирующие точки A и С (рис. ниже). Будем считать, что точка A принадлежит пл. α, а С лежит на прямой a. Фронтальные проекции A'' и С'' совпадают, но при этом т. A и С удалены от плоскости проекций П2 на разное расстояние.
Найдем горизонтальные проекции A' и C'. Как видно на рисунке, точка C' удалена от плоскости П2 на большее расстояние, чем т. A', принадлежащая пл. α. Следовательно, участок прямой а'', расположенный левее точки K'', будет видимым. Участок a'' правее K'' является невидимым. Отмечаем его штриховой линией.
Отметим на чертеже горизонтально-конкурирующие точки D и E. Будем считать, что точка D принадлежит пл. α, а E лежит на прямой a. Горизонтальные проекции D' и E' совпадают, но при этом т. D и E удалены от плоскости П1 на разное расстояние.
Определим положение фронтальных проекций D'' и E''. Как видно на рисунке, точка D'', находящаяся в пл. α, удалена от плоскости П1 на большее расстояние, чем т. E'', принадлежащая прямой a. Следовательно, участок а', расположенный правее точки K', будет невидимым. Отмечаем его штриховой линией. Участок a' левее K' является видимым.
Определимся с условием задачи. Пусть нам дана сторона, которую мы примем за основание. Высота, проведенная к одной из боковых сторон, НЕ МОЖЕТ БЫТЬ БОЛЬШЕ данной нам стороны, так как эта сторона является гипотенузой прямоугольного треугольника, одним из катетов которого является данная нам высота.
Решение. Отложим на прямой "а" отрезок АС, равный данной нам стороне и найдем его середину М известным при циркуля и линейки без делений. Из точки А, как из центра, проводим окружность радиусом АН, равным данной нам высоте к боковой стороне и строим касательную прямую к этой окружности из точки С. Отрезок АН - данная нам высота, так как радиус АН перпендикулярен касательной в точке касания. Теперь из точки М радиусом МВ, равным данной нам медиане, проводим окружность. Точка пересечения этой
окружности с касательной даст нам вершину В искомого треугольника.
Итак, мы построили треугольник АВС, в котором сторона АС, высота АН и медиана ВМ равны данным нам отрезкам.
На рисунке приведены три варианта построения с разными по величине данными отрезками..
Известно, что прямая пересекает плоскость, если она не принадлежит этой плоскости и не параллельна ей. Следуя приведенному ниже алгоритму, найдем точку пересечения прямой a с плоскостью общего положения α, заданной следами h0α, f0α.
Алгоритм
Через прямую a проводим вс фронтально-проецирующую плоскость γ. На рисунке обозначены её следы h0γ, f0γ.
Строим проекции прямой AB, по которой пересекаются плоскости α и γ. В данной задаче точка B' = h0α ∩ h0γ, A'' = f0α ∩ f0γ. Точки A' и B'' лежат на оси x, их положение определяется по линиям связи.
Прямые a и AB пересекаются в искомой точке K. Её горизонтальная проекция K' = a' ∩ A'B'. Фронтальная проекция K'' лежит на прямой a''.
Точка пересечения прямой и плоскости
Алгоритм решения останется тем же, если пл. α будет задана параллельными, скрещивающимися прямыми, отсеком фигуры или другими возможными .
Видимость прямой a относительно плоскости α. Метод конкурирующих точек
Определение видимости прямой
Отметим на чертеже фронтально-конкурирующие точки A и С (рис. ниже). Будем считать, что точка A принадлежит пл. α, а С лежит на прямой a. Фронтальные проекции A'' и С'' совпадают, но при этом т. A и С удалены от плоскости проекций П2 на разное расстояние.
Найдем горизонтальные проекции A' и C'. Как видно на рисунке, точка C' удалена от плоскости П2 на большее расстояние, чем т. A', принадлежащая пл. α. Следовательно, участок прямой а'', расположенный левее точки K'', будет видимым. Участок a'' правее K'' является невидимым. Отмечаем его штриховой линией.
Отметим на чертеже горизонтально-конкурирующие точки D и E. Будем считать, что точка D принадлежит пл. α, а E лежит на прямой a. Горизонтальные проекции D' и E' совпадают, но при этом т. D и E удалены от плоскости П1 на разное расстояние.
Определим положение фронтальных проекций D'' и E''. Как видно на рисунке, точка D'', находящаяся в пл. α, удалена от плоскости П1 на большее расстояние, чем т. E'', принадлежащая прямой a. Следовательно, участок а', расположенный правее точки K', будет невидимым. Отмечаем его штриховой линией. Участок a' левее K' является видимым.
Объяснение:
Определимся с условием задачи. Пусть нам дана сторона, которую мы примем за основание. Высота, проведенная к одной из боковых сторон, НЕ МОЖЕТ БЫТЬ БОЛЬШЕ данной нам стороны, так как эта сторона является гипотенузой прямоугольного треугольника, одним из катетов которого является данная нам высота.
Решение. Отложим на прямой "а" отрезок АС, равный данной нам стороне и найдем его середину М известным при циркуля и линейки без делений. Из точки А, как из центра, проводим окружность радиусом АН, равным данной нам высоте к боковой стороне и строим касательную прямую к этой окружности из точки С. Отрезок АН - данная нам высота, так как радиус АН перпендикулярен касательной в точке касания. Теперь из точки М радиусом МВ, равным данной нам медиане, проводим окружность. Точка пересечения этой
окружности с касательной даст нам вершину В искомого треугольника.
Итак, мы построили треугольник АВС, в котором сторона АС, высота АН и медиана ВМ равны данным нам отрезкам.
На рисунке приведены три варианта построения с разными по величине данными отрезками..