Через концы отрезка AB, который пересекает плоскость α в точке C, проведены параллельные прямые, которые пересекают плоскость α в точках A' и B' соответственно. а) докажите, что ΔAA'C ~ ΔBB'C
б) найдите CA' и CB', если AA' : BB'=3 : 8, A' B'= 33 см
Проведём диагональ АС, ттогда треугольники АСД и АВС равнобедренные т к по условию их боковые стороны равны.т.к угол д=39 градусам то угол САД+АСД=180-39=141 градус, тогда угол АСД=САД=141:2=70,5 градусам. Рассмотрим треуг. АВС: т.к угол В равен 3 гр,то ВАС+ВСА=180-3=177 градусов,по теореме о сумме углов треуг. т к треуг равнобедренный, то его углы при основании равны,тогда угол ВАС=ВСА=177:2=88,5 градусов тогда угол А равен сумме углов ВАС и САД т.е 88.5 градусов+70.5 градусов=159 градусов ответ: угол А=159 градусов
Тут можно воспользоваться теоремой высоты в прямоугольном треугольнике высота опущенная из вершины прямого угла делит гипотенузу на отрезки для которых верно что x1*x2=h^2 при этом x1+x2=c где с-гипотенуза отсюда вытекает построения 1) начертим отрезок являющийся суммой смежных сторон построим на нем как на диаметре окружность тогда все точки лежащие на этой окружности будут образовывать прямоугольный треугольник если соединить ее с этой прямой далее опустим в произвольные место на эту сторону высоту равную стороне данного квадрата далее через вершину этого перпендикуляра проведем еще 1 прямую перпендикулярную данной прямой и получим 2 точки пересечения с окружностью из любых из этих точек опустим на нашу сторону являющуюся суммой перпендикуляр он разобьет эту прямую на 2 отрезка которые и будут сторонами искомого прямоугольника осталось только составить из этих сторон прямоугольник.
Рассмотрим треуг. АВС:
т.к угол В равен 3 гр,то ВАС+ВСА=180-3=177 градусов,по теореме о сумме углов треуг.
т к треуг равнобедренный, то его углы при основании равны,тогда угол ВАС=ВСА=177:2=88,5 градусов
тогда угол А равен сумме углов ВАС и САД т.е 88.5 градусов+70.5 градусов=159 градусов
ответ: угол А=159 градусов