Через конец М отрезка МК произведена плоскость. Через конец К и точку С этого отрезка проведены параллельные прямые, пересекающие плоскость в точках К1 и С1. Найдите длину отрезка МК, если КК1=9см., МС:СС1=2:3.
Я формулировку теоремы не стала удалять (повторить всегда полезно)) но она и не пригодилась... 1/ отрезки касательных, проведенных из одной точки (К) равны... DK=KC 2/ центр вписанной в угол окружности лежит на биссектрисе этого угла)) ОК - биссектриса ∠DKC ∠DKO = ∠CKO ∠DOK = ∠COK 3/ вписанный угол равен половине градусной меры центрального, опирающегося на ту же дугу ∠DAC (опирается на дугу DC) = (1/2)∠DOC = ∠KOC т.е. DA || KO О --середина АС ---> KO --средняя линия, К --середина ВС DK = KC = (1/2)BC = 6
Такие задачи решать не нужно в классическом виде. Они решаются так - 1) длина окружности и радиус линейно зависимы . (т.е. при изменении одной величины другая изменяется в столько же раз) 2) у площади и радиуса зависимость квадратичная (т.е. при изменении радиуса площадь изменяется в квадрате, а при изменении площади радиус изменяется в квадратном корне)
3) значит, при изменении длины окружности радиус изменяется во столько же раз, а площадь в квадрате. Т.е. при уменьшении окружности в 3 раза радиус тоже уменьшается в 3 раза, а площадь в 3² =9 раз.
Много написано, но это для полного пояснения. Там решение в одну фразу.
но она и не пригодилась...
1/ отрезки касательных, проведенных из одной точки (К) равны...
DK=KC
2/ центр вписанной в угол окружности лежит на биссектрисе этого угла))
ОК - биссектриса ∠DKC
∠DKO = ∠CKO
∠DOK = ∠COK
3/ вписанный угол равен половине градусной меры центрального, опирающегося на ту же дугу
∠DAC (опирается на дугу DC) = (1/2)∠DOC = ∠KOC
т.е. DA || KO
О --середина АС ---> KO --средняя линия, К --середина ВС
DK = KC = (1/2)BC = 6
1) длина окружности и радиус линейно зависимы . (т.е. при изменении одной величины другая изменяется в столько же раз)
2) у площади и радиуса зависимость квадратичная (т.е. при изменении радиуса площадь изменяется в квадрате, а при изменении площади радиус изменяется в квадратном корне)
3) значит, при изменении длины окружности радиус изменяется во столько же раз, а площадь в квадрате. Т.е. при уменьшении окружности в 3 раза радиус тоже уменьшается в 3 раза, а площадь в 3² =9 раз.
Много написано, но это для полного пояснения. Там решение в одну фразу.