Через точку. A проведены к окружности касательная AK (K-точка касания) и секущая, пересекающая окружность в точках E и F (точка F лежит между точками A и E). Найдите отрезок AF, если AK=4см
Так как ширина окантовки одинакова, примем её за х (см), тогда : (2х + 19) см - это ширина картины с окантовкой (2х + 32) см - это длина картины с окантовкой (2х + 19) * (2х + 32) - это площадь картины с окантовкой Составим уравнение: (2х + 19) * (2х + 32) = 1080 4х^2 + 34 x + 64x + 608 = 1080 4x^2 + 102x - 472 = 0 ( : на 2) 2x^2 + 51 - 236 = 0 D = 2601 - 4(-236)(2) = 2601 + 1888 = 4489; YD = 67 x1 = (- 51 + 67) / 4 = 16/4 = 4 x2 = (-51 -67) / 4 = - 29,5 ( не подходит по условию задачи) ответ: 4см - ширина окантовки
Средняя линия треугольника параллельна третьей стороне и равна ее половине.
Дано: ΔАВС, КМ - средняя линия. Доказать: КМ ║ АС, КМ = АС/2
Доказательство:
1. Через точку К (середину стороны АВ) проведем прямую, параллельную стороне АС. По теореме Фалеса эта прямая разделит сторону ВС пополам, значит пройдет через точку М. Средняя линия КМ лежит на прямой, параллельной АС, значит КМ ║ АС. 2. Через точку М проведем прямую, параллельную стороне АВ. По теореме Фалеса она разделит сторону АС пополам. Н - середина АС. АКМН - параллелограмм, так как КМ ║ АН и МН ║ АК по построению, значит КМ = АН = АС/2
тогда :
(2х + 19) см - это ширина картины с окантовкой
(2х + 32) см - это длина картины с окантовкой
(2х + 19) * (2х + 32) - это площадь картины с окантовкой
Составим уравнение:
(2х + 19) * (2х + 32) = 1080
4х^2 + 34 x + 64x + 608 = 1080
4x^2 + 102x - 472 = 0 ( : на 2)
2x^2 + 51 - 236 = 0
D = 2601 - 4(-236)(2) = 2601 + 1888 = 4489; YD = 67
x1 = (- 51 + 67) / 4 = 16/4 = 4
x2 = (-51 -67) / 4 = - 29,5 ( не подходит по условию задачи)
ответ: 4см - ширина окантовки
Дано: ΔАВС, КМ - средняя линия.
Доказать: КМ ║ АС, КМ = АС/2
Доказательство:
1. Через точку К (середину стороны АВ) проведем прямую, параллельную стороне АС.
По теореме Фалеса эта прямая разделит сторону ВС пополам, значит пройдет через точку М.
Средняя линия КМ лежит на прямой, параллельной АС, значит
КМ ║ АС.
2. Через точку М проведем прямую, параллельную стороне АВ.
По теореме Фалеса она разделит сторону АС пополам. Н - середина АС.
АКМН - параллелограмм, так как КМ ║ АН и МН ║ АК по построению, значит КМ = АН = АС/2