Через точку F, лежащую между параллельными плоскостями α и β проведены прямые, пересекающие плоскость α в точках А1 и В1; плоскость β в точках А2 и В2 .Найти FB1 если FA1: A1A2 = 1: 3,B1B2=30дм
4) AD=CD, => △ADC равноб. <ADB=<CDB => DB - бисс, высота и медиана. Но это также значит что она точно медиана и высота для △ABC (для этого треугольника она тоже перпендикулярна и делит AC пополам) => △ABC - равноб. (Если в треугольнике высота совпадает с медианой, то этот треугольник является равнобедренным)
5) <AEB=<CEB как смежные с равными углами <AED=<CED. Для тр-ков AEB и CEB сторона EB общая, а <ABE=<CBE по условию. => △AEB =△CEB по 2му признаку. => AB=BC =>△ABC - равноб.
6) AE=EC => △AEC - равноб. По условию AD=DC, значит ED - медиана и высота, проходящая через точку B. Значит и для △ABC она будет медианой и высотой => △ABC - равноб. (как в 4й задаче)
7) AD=DC => △ADC - равноб. По условию <ADE=<CDE, значит DE - биссектриса, а значит и медиана и высота для стороны AC. Значит и для △ABC она будет медианой и высотой. => △ABC - равноб. (как в 4й задаче)
8) хз
9) Если я правильно понял, по условию AE=FC, ED=DF. Рассмотрим тр-ки AFD и CED. У них AD=AE+ED, CD=DF+FC, и исходя из условия следует, что AD=CD. Угол <ADC у них общий, а ED=DF => △AFD=△CED по 1му признаку. => <AFD=<CED => смежные с ними углы равны <AFC=<CEA. Также из рав-ва этих тр-ков следует, что <DCE=<DAF. По условию, AE=FC => △CFB=△AEB по 2му признаку. => AB=BC => △ABC - равноб.
P = 2x + y (x - боковые стороны, y - основание) y = 96, P = 196 - дано в условии, найдем x 2X=P-y x= (P-y)/2 x=50
итого: x = 50, y = 96 нам не хватает высоты, для нахождения площади. Проведем высоту и рассмотрим половинку этого равнобедренного треугольника, где гипотенуза - x, а прилежащий катет - y/2 (т.к высота в равнобедренном треугольника - медиана) по теореме Пифагора h = √(x^2 - (y/2)^2) h = √(50^2 - 48^2) = √196 = 14
Площадь треугольника: половина основания на высоту, основание - y, высота - h тогда: S=1/2*hy = 96*14/2 = 672. ответ: 672
Объяснение:
1) <BCA - смежный с углом 110°, значит <BCA=180-110=70°. Значит <BCA=<BAC => △ABC - равноб.
2) <BAC - смежный с углом 100°, значит <BAC=180-100=80°. <BCA=<80° как вертикальные. Значит <BCA=<BAC => △ABC - равноб.
3) BD=BE => △DBE - равноб. => <BDE=<BED. По условию <BDE=<BAC, <BED=<BCA => <BAC=<BCA => △ABC - равноб.
4) AD=CD, => △ADC равноб. <ADB=<CDB => DB - бисс, высота и медиана. Но это также значит что она точно медиана и высота для △ABC (для этого треугольника она тоже перпендикулярна и делит AC пополам) => △ABC - равноб. (Если в треугольнике высота совпадает с медианой, то этот треугольник является равнобедренным)
5) <AEB=<CEB как смежные с равными углами <AED=<CED. Для тр-ков AEB и CEB сторона EB общая, а <ABE=<CBE по условию. => △AEB =△CEB по 2му признаку. => AB=BC =>△ABC - равноб.
6) AE=EC => △AEC - равноб. По условию AD=DC, значит ED - медиана и высота, проходящая через точку B. Значит и для △ABC она будет медианой и высотой => △ABC - равноб. (как в 4й задаче)
7) AD=DC => △ADC - равноб. По условию <ADE=<CDE, значит DE - биссектриса, а значит и медиана и высота для стороны AC. Значит и для △ABC она будет медианой и высотой. => △ABC - равноб. (как в 4й задаче)
8) хз
9) Если я правильно понял, по условию AE=FC, ED=DF. Рассмотрим тр-ки AFD и CED. У них AD=AE+ED, CD=DF+FC, и исходя из условия следует, что AD=CD. Угол <ADC у них общий, а ED=DF => △AFD=△CED по 1му признаку. => <AFD=<CED => смежные с ними углы равны <AFC=<CEA. Также из рав-ва этих тр-ков следует, что <DCE=<DAF. По условию, AE=FC => △CFB=△AEB по 2му признаку. => AB=BC => △ABC - равноб.
y = 96, P = 196 - дано в условии, найдем x
2X=P-y
x= (P-y)/2
x=50
итого: x = 50, y = 96
нам не хватает высоты, для нахождения площади.
Проведем высоту и рассмотрим половинку этого равнобедренного треугольника, где гипотенуза - x, а прилежащий катет - y/2 (т.к высота в равнобедренном треугольника - медиана)
по теореме Пифагора
h = √(x^2 - (y/2)^2)
h = √(50^2 - 48^2) = √196 = 14
Площадь треугольника: половина основания на высоту, основание - y, высота - h
тогда: S=1/2*hy = 96*14/2 = 672.
ответ: 672