Найдем радиус вписанной окружности по формуле r=√mn, где m и n - длины отрезков, на которые точка касания делит большую сторону. r=√3*12=√36=6 см. Высота трапеции равна 2 радиусам вписанной окружности, поэтому h=6*2=12 см. Меньшая боковая сторона = h = 12 см. Сумма боковых сторон = 12+3+12=27 см. Из свойств описанной трапеции следует, что сумма длин боковых сторон равна сумме длин оснований. Сумма оснований=27 см. Находим площадь трапеции, которая равна полусумме оснований, умноженной на высоту. S=27:2*12=162 см². ответ: 162 см².
6 000 см кв.
Объяснение:
1) Параллелограмм, вписанный в окружность, является прямоугольником.
2) Диагональ прямоугольника, вписанного в окружность, равна диаметру окружности d.
3) Согласно теореме Пифагора:
d^2 = a^2 + b^2,
где a и b - стороны прямоугольника, d - диаметр (в нашем случае он равен 65 * 2 = 130 см).
4) Решаем уравнение в частях:
d^2 = a^2 + b^2,
130^2 = 10^2 + 24^2
16900 = 100 + 576
16900 : 676 = 25 см кв - это одна квадратная часть,
следовательно, 1 часть = √ 25 = 5 см.
5) Стороны прямоугольника в см:
10 * 5 = 50 см,
24 * 5 = 120 см.
6) Площадь прямоугольника:
50 * 120 = 6 000 см кв.
ответ: 6 000 см кв.
r=√3*12=√36=6 см.
Высота трапеции равна 2 радиусам вписанной окружности, поэтому h=6*2=12 см.
Меньшая боковая сторона = h = 12 см.
Сумма боковых сторон = 12+3+12=27 см.
Из свойств описанной трапеции следует, что сумма длин боковых сторон равна сумме длин оснований. Сумма оснований=27 см.
Находим площадь трапеции, которая равна полусумме оснований, умноженной на высоту.
S=27:2*12=162 см².
ответ: 162 см².