Через точку m лежащую вне окружности с центром о проведены касательные ma и mb к окружности (a и b. точки касания). известно что окружность делит отрезок mo пополам. в каком отношении прямая ab делит mo?
Правильная призма — это прямая призма, основанием которой является правильный многоугольник. Боковые грани правильной призмы — равные прямоугольники. В треугольнике ВА1С1 сторона А1С1 = 2 (дано). Сторона ВА1 находится из треугольника АА1В по Пифагору: √(АА1²+АВ²) = √(1+4) = √5. Сторона ВС1=ВА1, так как боковые грани - равные прямоугольники. Итак, треугольник ВА1С1 равнобедренный с боковыми сторонами равными √5 и основанием, равным 2. Нам надо найти расстояние от точки А1 до отрезка ВС1, то есть перпендикуляр А1Н - высоту, опущенную на боковую сторону треугольника. Найдем площадь треугольника по формуле: S=[b*√(a²-(b²/4)]:2, где а - боковая сторона (√5), а b - основание треугольника (2). У нас S = [2*√(5-(4/4)]:2 =2. Но эта же площадь равна (1/2)*ВС1*А1Н, откуда А1Н = S/[(1/2)*ВС1] = 2/(√5/2) = 4/√5 или (4√5)/5. ответ: искомое расстояние равно (4√5)/5 ≈ 1,79.
В равнобедренном треугольнике медиана, проведенная к основанию, является также и высотой. Рассмотрим получившийся прямоугольный треуг-ик АВ1В. Здесь АВ1=СВ1=16:2=8 (т.к. ВВ1 - медиана). По теореме Пифагора в АВ1В находим неизвестный катет ВВ1: BB1=√AB² - AB1² = √100-64=√36=6 Зная, что медианы треугольника АВС пересекаются в одной точке, которая делит каждую медиану в отношении 2 : 1, считая от вершины, выразим ОВ. ОВ : ОВ1 = 2 : 1 (всего частей получается 2+1=3). Если ВВ1 = 6, то каждая из трех частей равна 6:3=2. На ОВ приходится 2 части, значит, ОВ=2*2=4.
В треугольнике ВА1С1 сторона А1С1 = 2 (дано). Сторона ВА1 находится из треугольника АА1В по Пифагору: √(АА1²+АВ²) = √(1+4) = √5. Сторона ВС1=ВА1, так как боковые грани - равные прямоугольники.
Итак, треугольник ВА1С1 равнобедренный с боковыми сторонами равными √5 и основанием, равным 2. Нам надо найти расстояние от точки А1 до отрезка ВС1, то есть перпендикуляр А1Н - высоту, опущенную на боковую сторону треугольника. Найдем площадь треугольника по формуле: S=[b*√(a²-(b²/4)]:2, где а - боковая сторона (√5), а b - основание треугольника (2). У нас S = [2*√(5-(4/4)]:2 =2. Но эта же площадь равна (1/2)*ВС1*А1Н, откуда А1Н = S/[(1/2)*ВС1] = 2/(√5/2) = 4/√5 или (4√5)/5.
ответ: искомое расстояние равно (4√5)/5 ≈ 1,79.
Здесь АВ1=СВ1=16:2=8 (т.к. ВВ1 - медиана). По теореме Пифагора в АВ1В находим неизвестный катет ВВ1:
BB1=√AB² - AB1² = √100-64=√36=6
Зная, что медианы треугольника АВС пересекаются в одной точке, которая делит каждую медиану в отношении 2 : 1, считая от вершины, выразим ОВ.
ОВ : ОВ1 = 2 : 1 (всего частей получается 2+1=3). Если ВВ1 = 6, то каждая из трех частей равна 6:3=2. На ОВ приходится 2 части, значит, ОВ=2*2=4.