Через точку m взятую на медеане ad треугольника abc, и вершину b проведена прямая, пересекающая сторону ac в точке k. найдите ak/kc, если a) m середина отрезка ad, б) am/ad =1/2
Не могут пусть прямоугольный треугольник АВС (С-прямой) биссектрисы пересекаются в точкеО 1.рассмотрим треугольник АОВ, образованный биссектрисами острых углов сумма острых углов 90гр (в треугольнике АВС), значит сумма углов ОАВ и ОВА -45гр, значит угол между биссектрисами угол АОВ=135гр 2. рассмотрим треугольник обрзованный биссектрисами прямого и одного из острых углов . Прямой угол делим пополам 90:2=45ГР, острый будет еще меньше, значит третий угол будет больше 90гр. ответ не могут, биссектрисы пересекаются по тупым углом
биссектрисы пересекаются в точкеО
1.рассмотрим треугольник АОВ, образованный биссектрисами острых углов
сумма острых углов 90гр (в треугольнике АВС), значит сумма углов ОАВ и ОВА -45гр, значит угол между биссектрисами угол АОВ=135гр
2. рассмотрим треугольник обрзованный биссектрисами прямого и одного из острых углов . Прямой угол делим пополам 90:2=45ГР, острый будет еще меньше, значит третий угол будет больше 90гр.
ответ не могут, биссектрисы пересекаются по тупым углом
По условию, b = 8, α = 37°, γ=60°.
Тогда β = 180° - (α + γ) , тогда sin β = sin(180° - (α + γ)) = sin (α + γ)
По теореме синусов: b / sin β = c /sin γ, отсюда c = b · (sin γ / sin β)
Тогда площадь треугольника: S = 1/2 · b · c · sin α = b/2 · b · (sin γ / sin β) · sin α.
Таким образом S = (b2 · sin α · sin γ) / (2 · sin β)
S = [b2 · sin α · sin γ] / [2 · sin (α + γ)]
S = [64 · sin 37° · sin 60°] / [2 · sin 97°]
По таблице Брадиса:
sin 37° ≈ 0,602
sin 60° ≈ 0,866
sin 97° ≈ 0,993
S ≈ [64 · 0,602 · 0,866] / [2 · 0,993] ≈ 16,8
ответ ≈ 16,8