Решение, а) По условию Z2 + Z4 = 220°. Эти углы вертикальные, поэтому Z2 = Z4 = 110°.
Углы 1 и 2 смежные, поэтому Zl + Z2 = 180°, откуда Z1 = 180° -- 110° = 70°.
Углы 3 и 1 вертикальные, поэтому Z3 = Z1 = 70°.
б) Углы 1 и 3, а также 2 и 4 вертикальные, поэтому Z3 = Zl, Z4 = = Z2. Подставив эти выражения в данное равенство, получим:
3(2Z1) = 2Z2,
или
3Z1 =Z2.
Углы 1 и 2 смежные, поэтому Zl + Z2 = 180°. Из этих двух равенств находим Z1 и Z2: Z1 = 45°, Z2 = 135°.
Z3 = Z1, поэтому Z3 = 45°; Z4 = Z2, поэтому Z4 = 135°
в) По условию Z2 — Z1 = 30°. Эти углы смежные, следовательно, Zl + Z2 = 180°. Из этих двух равенств имеем: Z1 = 75°, Z2 = 105°.
Z3 = Z1, поэтому Z3 = 75°; Z4 = Z2, поэтому Z4 = 105°.
ответ, a) Zl = Z3 = 70°, Z2 = Z4 = 110°; б) Zl =Z3 = 45°, Z2 = = Z4 = 135°; в) Zl = Z3 = 75°, Z2 = Z4 = 105°.
Дано: ABCA₁B₁C₁ - прямая призма с равными рёбрами. F∈A₁C₁; A₁F = FC₁
BC₁∩CB₁ = O
Найти: FO.
Боковые грани призмы это квадраты т.к. рёбра равны и призма прямая.
Пусть M∈B₁C₁ и OM⊥B₁C₁ тогда OM - медиана (т.к. ΔB₁O₁C₁ - равнобедренный), то есть B₁M = MC₁ значит FM - средняя линия ΔA₁C₁B₁.
FM = A₁B₁:2 = 4:2 см = 2см - как средняя линия.
MO = MB₁ - как катет в прямоугольном Δ с острым углом в 45° (ΔB₁OM).
MO = B₁C₁:2 = 4:2 см = 2см.
FM ⊥ MO т.к. призма прямая, то есть линейный угол, двугранного угла между основаниями и боковыми гранями, будет 90°.
По теореме Пифагора в прямоугольном ΔFMO:
см.
ответ: 2√2 см.
Решение, а) По условию Z2 + Z4 = 220°. Эти углы вертикальные, поэтому Z2 = Z4 = 110°.
Углы 1 и 2 смежные, поэтому Zl + Z2 = 180°, откуда Z1 = 180° -- 110° = 70°.
Углы 3 и 1 вертикальные, поэтому Z3 = Z1 = 70°.
б) Углы 1 и 3, а также 2 и 4 вертикальные, поэтому Z3 = Zl, Z4 = = Z2. Подставив эти выражения в данное равенство, получим:
3(2Z1) = 2Z2,
или
3Z1 =Z2.
Углы 1 и 2 смежные, поэтому Zl + Z2 = 180°. Из этих двух равенств находим Z1 и Z2: Z1 = 45°, Z2 = 135°.
Z3 = Z1, поэтому Z3 = 45°; Z4 = Z2, поэтому Z4 = 135°
в) По условию Z2 — Z1 = 30°. Эти углы смежные, следовательно, Zl + Z2 = 180°. Из этих двух равенств имеем: Z1 = 75°, Z2 = 105°.
Z3 = Z1, поэтому Z3 = 75°; Z4 = Z2, поэтому Z4 = 105°.
ответ, a) Zl = Z3 = 70°, Z2 = Z4 = 110°; б) Zl =Z3 = 45°, Z2 = = Z4 = 135°; в) Zl = Z3 = 75°, Z2 = Z4 = 105°.
Дано: ABCA₁B₁C₁ - прямая призма с равными рёбрами. F∈A₁C₁; A₁F = FC₁
BC₁∩CB₁ = O
Найти: FO.
Боковые грани призмы это квадраты т.к. рёбра равны и призма прямая.
Пусть M∈B₁C₁ и OM⊥B₁C₁ тогда OM - медиана (т.к. ΔB₁O₁C₁ - равнобедренный), то есть B₁M = MC₁ значит FM - средняя линия ΔA₁C₁B₁.
FM = A₁B₁:2 = 4:2 см = 2см - как средняя линия.
MO = MB₁ - как катет в прямоугольном Δ с острым углом в 45° (ΔB₁OM).
MO = B₁C₁:2 = 4:2 см = 2см.
FM ⊥ MO т.к. призма прямая, то есть линейный угол, двугранного угла между основаниями и боковыми гранями, будет 90°.
По теореме Пифагора в прямоугольном ΔFMO:
см.
ответ: 2√2 см.