Если радиус равен 2 √3 тогда длина хорды, стянутой дугой в 60 градусов будет равна радиусу так как образуется равносторонний треугольник если соединить края хорды с центром окружности в основании конуса. Если высота конуса равна 4√3 то высота треугольника , образованного в разрезе будет определяться по теореме Пифагора из треугольника образованного высотой конуса, высотой треугольника полученного в разрезе и высотой равностороннего треугольника полученного в результате соединения краев хорды с центром основания. Высота треугольника лежащего в основании конуса будет равна 3
Следовательно по теореме Пифагора высота разреза будет равна √(9+48)
Теперь чтоб узнать площадь разреза нужно найти площадь треугольника полученного в разрезе , а это произведение высоты √57 на основание 2 √3 и делим пополам. Получаем площадь разреза 3√19
Дано :
параллелограмм NPKA
<ANK = 45°
<KNP = 65°
Найти:
<А, <К, <Р, <N, <NKA, <NKP = ?
<N = <ANK + <KNP = 45° + 65° = 110°
<N = <K = 110° (св-во параллелограмма - противоположные углы равны)
<А = 180° - <К = 180° - 110° = 70° (свойство параллелограмма - углы, прилежащие к любой стороне, в сумме равны 180°)
<Р = <А = 70° (св-во параллелограмма - противоположные углы равны)
<NKA = <KNP = 65° (н.л. при NP//AK и секущей NK)
<NKP = <K - <NKA = 110° - 65° = 45°
ответ: <А = <Р = 70° ; <К = <N = 110° ; <NKA = 65° ; <NKP = 45°
Если радиус равен 2 √3 тогда длина хорды, стянутой дугой в 60 градусов будет равна радиусу так как образуется равносторонний треугольник если соединить края хорды с центром окружности в основании конуса. Если высота конуса равна 4√3 то высота треугольника , образованного в разрезе будет определяться по теореме Пифагора из треугольника образованного высотой конуса, высотой треугольника полученного в разрезе и высотой равностороннего треугольника полученного в результате соединения краев хорды с центром основания. Высота треугольника лежащего в основании конуса будет равна 3
Следовательно по теореме Пифагора высота разреза будет равна √(9+48)
Теперь чтоб узнать площадь разреза нужно найти площадь треугольника полученного в разрезе , а это произведение высоты √57 на основание 2 √3 и делим пополам. Получаем площадь разреза 3√19