Через вершину а прямокутного трикутника авс (кут с=90°) до його площини проведено перпендикуляр ам. знайдіть довжину гіпотенузи ав, якщо вс=5 см, мс=17 см,ма=8 см.
В остроугольном треугольнике ABC серединные перпендикуляры к сторонам BC и AC пересекаются в точке M. Известно, что MC = 14 см, ∠AВМ = 30°. Найдите расстояние от точки M до стороны AB. ответ дайте в сантиметрах.
Объяснение:
Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке — центре описанной окружности.
Значит МА=МВ=МС=R = 14 см.
Тогда ΔАМВ - равнобедренный с основанием АВ и ∠МАВ=∠МВА=30°.
Расстоянием от т.М до стороны АВ есть высота равнобедренного ΔАМВ.
Построим высоту МК. Получили прямоугольный ΔВМК с прямым ∠МКВ и гипотенузой МВ.
7 см
Правильное условие:
В остроугольном треугольнике ABC серединные перпендикуляры к сторонам BC и AC пересекаются в точке M. Известно, что MC = 14 см, ∠AВМ = 30°. Найдите расстояние от точки M до стороны AB. ответ дайте в сантиметрах.
Объяснение:
Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке — центре описанной окружности.
Значит МА=МВ=МС=R = 14 см.
Тогда ΔАМВ - равнобедренный с основанием АВ и ∠МАВ=∠МВА=30°.
Расстоянием от т.М до стороны АВ есть высота равнобедренного ΔАМВ.
Построим высоту МК. Получили прямоугольный ΔВМК с прямым ∠МКВ и гипотенузой МВ.
Катет МК = sin∠MВK * MВ.
Т.к. ∠МВК = ∠АВМ = 30° и МА = 14 см, то
МК = sin 30° * 14 = 7 (см)
Основание треугольника — 16 см.
Боковая сторона — 24 см.
Объяснение:
Рассмотрим два возможных случая:
1 случай.
Если длины боковых сторон равны 16 см, то длина основания равна
64 - (16+16) = 64 - 32 = 32 ( см).
такого треугольника не существует, т.к. длина третьей стороны должна быть меньше суммы двух других. В нашем же случае 32 см > 16 см + 16 см - неверно.
2 случай.
Если длина основания равна 16 см, то длина боковой стороны равна (64 - 16) : 2 = 48 : 2 = 24 (см).
Такой треугольник существует, неравенство треугольника выполнено.
Основание треугольника — 16 см.
Боковая сторона — 24 см