через вершину n прямокутника mnkf до його площини проведено перпендикуляр no=8см знайти тангенс кута між прямою of і площиною прямокутника якщо сторони прямокутника дорівнюють 3см і 4 см
Пусть дан один равнобедренный треугольник и второй равнобедренный треугольник АВС с равными углам при основаниях, следовательно, и третий угол при вершине одного треугольника равен третьему углу второго.
Эти треугольники подобны. В подобных треугольниках все их элементы пропорциональны, следовательно, точка пересечения биссектрисы угла при основании с высотой второго треугольника делит ее в том же отношении, что в первом, т.е. 5:3
Высота ВН равнобедренного треугольника, проведенная к основанию, является и биссектрисой и медианой. АН=НС.
Имеем две биссектрисы треугольника АВС, которые пересекаются в некой точке О. Точка О пересечения биссектрис треугольника АВС является центром вписанной в него окружности.
Из точки О проведем перпендикуляры ОМ и ОК к боковым сторонам треугольника. М, К и Н - точки касания окружности и сторон треугольника.
ОМ=ОК=ОН= радиусу вписанной окружности.
Пусть коэффициент отношения отрезков высоты равен х.
Тогда ВО=5х, ОН=3х, ОМ=ОК=3х
Треугольники ВОМ и ВОК - египетские,т.к. катет и гипотенуза относятся как 3:5 ⇒
ВМ=ВК=4х ( можно проверить по т.Пифагора)
ВН=3х+5х=8х
Треугольники ВМО и ВНА - подобные, т.к. оба прямоугольные и имеют общий острый угол. Следовательно, треугольник ВНА тоже египетский, и из отношения сторон такого треугольника следует
АВ=10х, АН=6х. Или из подобия треугольников через отношение сходственных сторон
1) Две точки прямоугольника- (1;1), (10;1) расположены на высоте 1 (то есть, координата y=1). Ещё две точки (1;7), (10;7) расположены на высоте 7 (то есть, координата y=7).
Расстояние по оси y между этими парами точек равно a = 7 - 1 = 6. Это первая сторона прямоугольника.
Расстояние по оси x между точками в каждой паре равно b = 10 - 1 = 9. Это вторая сторона прямоугольника.
Перемножив стороны, найдём площадь этого прямоугольника: S = a * b = 6 * 9 = 54
2) В этом треугольнике сторона с вершинами (1;6), (9;6) параллельна оси x, так как точки имеют одинаковую координату y. А сторона с вершинами (9;6), (9;9) - параллельна оси y, так как точки имеют одинаковую координату x.
Следовательно, угол между этими сторонами- прямой. Значит, наш треугольник- прямоугольный, а эти стороны являются его катетами. В прямоугольном треугольнике площадь равна половине произведения катетов.
Длина первой стороны равна разности координат x первой пары точек: a = 9 - 1 = 8 Длина второй стороны равна разности координат y второй пары точек: b = 9 - 6 = 3
Вычислим площадь треугольника: S = a * b / 2 = 8 * 3 / 2 = 12
Для наглядности, приложу картинки с этими фигурами, построенными в системе координат.
Пусть дан один равнобедренный треугольник и второй равнобедренный треугольник АВС с равными углам при основаниях, следовательно, и третий угол при вершине одного треугольника равен третьему углу второго.
Эти треугольники подобны. В подобных треугольниках все их элементы пропорциональны, следовательно, точка пересечения биссектрисы угла при основании с высотой второго треугольника делит ее в том же отношении, что в первом, т.е. 5:3
Высота ВН равнобедренного треугольника, проведенная к основанию, является и биссектрисой и медианой. АН=НС.
Имеем две биссектрисы треугольника АВС, которые пересекаются в некой точке О. Точка О пересечения биссектрис треугольника АВС является центром вписанной в него окружности.
Из точки О проведем перпендикуляры ОМ и ОК к боковым сторонам треугольника. М, К и Н - точки касания окружности и сторон треугольника.
ОМ=ОК=ОН= радиусу вписанной окружности.
Пусть коэффициент отношения отрезков высоты равен х.
Тогда ВО=5х, ОН=3х, ОМ=ОК=3х
Треугольники ВОМ и ВОК - египетские,т.к. катет и гипотенуза относятся как 3:5 ⇒
ВМ=ВК=4х ( можно проверить по т.Пифагора)
ВН=3х+5х=8х
Треугольники ВМО и ВНА - подобные, т.к. оба прямоугольные и имеют общий острый угол. Следовательно, треугольник ВНА тоже египетский, и из отношения сторон такого треугольника следует
АВ=10х, АН=6х. Или из подобия треугольников через отношение сходственных сторон
ВН:ВМ=АН:ОМ
ВН=3х+5х=8х
8х:4х=АН:МО
АН:МО=2
АН=6х
АВ=ВС=5*2=10х
ВН - медиана, поэтому
АС=6х+6х=12х
Периметр треугольника равен АВ+ВС+АС=48
Р=10х+10х+12х=32х
32х=48
х=1,5 см
АВ=ВС=1,5*10=15 см
АС=1,5*12=18 см
Ещё две точки (1;7), (10;7) расположены на высоте 7 (то есть, координата y=7).
Расстояние по оси y между этими парами точек равно a = 7 - 1 = 6.
Это первая сторона прямоугольника.
Расстояние по оси x между точками в каждой паре равно b = 10 - 1 = 9.
Это вторая сторона прямоугольника.
Перемножив стороны, найдём площадь этого прямоугольника:
S = a * b = 6 * 9 = 54
2) В этом треугольнике сторона с вершинами (1;6), (9;6) параллельна оси x, так как точки имеют одинаковую координату y.
А сторона с вершинами (9;6), (9;9) - параллельна оси y, так как точки имеют одинаковую координату x.
Следовательно, угол между этими сторонами- прямой. Значит, наш треугольник- прямоугольный, а эти стороны являются его катетами.
В прямоугольном треугольнике площадь равна половине произведения катетов.
Длина первой стороны равна разности координат x первой пары точек:
a = 9 - 1 = 8
Длина второй стороны равна разности координат y второй пары точек:
b = 9 - 6 = 3
Вычислим площадь треугольника:
S = a * b / 2 = 8 * 3 / 2 = 12
Для наглядности, приложу картинки с этими фигурами, построенными в системе координат.