Через вершину в паралелограма авсd проведено перпендикуляр ак до його пощини. Довести що пряма якій належить висота вм паралелограма перпендикуляра площині вкс
Трапеция АВСД, ДА=СВ, АВ=4,ДС=16, уголД=уголС,проводим перпендикуляры АН и ВК на ДС, треугольникДАН=треугольникКВС, по гипотенузе и острому углу, ДН=КС, АН=ВК, НАВК-прямоугольник АВ=НК=4, ДН=КС=(ДС-НК)/2=(16-4)/2=6, в трапецию можно вписать окружность при условии когда сумма оснований=сумме боковых сторон, АВ+ДС=АД+ВС, 4+16=2АД, АД=ВС=10, треугольник ДАН прямоугольнгый, АН=диаметру окружности=корень(ДА в квадрате-ДН в квадрате)=корень(100-36)=8, радиус=8/2=4, площадь круга=пи*радиус в квадрате=16пи
могу ответить только на 3 вопрос.
16пи
Объяснение:
Трапеция АВСД, ДА=СВ, АВ=4,ДС=16, уголД=уголС,проводим перпендикуляры АН и ВК на ДС, треугольникДАН=треугольникКВС, по гипотенузе и острому углу, ДН=КС, АН=ВК, НАВК-прямоугольник АВ=НК=4, ДН=КС=(ДС-НК)/2=(16-4)/2=6, в трапецию можно вписать окружность при условии когда сумма оснований=сумме боковых сторон, АВ+ДС=АД+ВС, 4+16=2АД, АД=ВС=10, треугольник ДАН прямоугольнгый, АН=диаметру окружности=корень(ДА в квадрате-ДН в квадрате)=корень(100-36)=8, радиус=8/2=4, площадь круга=пи*радиус в квадрате=16пи
1) Расстояние от оси цилиндра до плоскости - длина перпендикуляра, опущенного из любой точки оси на данную плоскость, на рисунке: ОН =8 см.
2)Сечение - прямоугольник СС'BB' и его площадь равна BC' *CC' = 60 cм,
учитывая, что BC' = 5 см , то CC' = 12 см.
3) V = S осн.* H
S осн = pi* R^2
R- ? Из тр-ка OBB' - равнобедр. прямоуг.: OH - высота, медиана, тогда BH =12:2=6
Из тр-ка OBH' - прямоуг.: R = OB= корень из( OH^2 +BH^2)=
= корень из (8^2+6^2) = 10 см.
Таким образом V = pi* 10^2*5 =500*pi (см ^3)
Объяснение: