а) Если треугольник BKD прямоугольный, то мы можем применить к нему т. Пифагора: BK^2+KD^2=BD^2; BD^2=5^2+12^2=169; BD=кв.кор из 169=13 и по условию BD=13см, из этого следует что треугольник BKD-прямоугольный.
б) Мы доказали , то что треугольник BKD -прямоугольный с прямым углом K следственно треугольник ABK тоже прямоугольный. Площадь прямоугольного треугольника вычисляется по формуле S=1/2*Ak*BK=1/2*4*12=24см^2
AD=AK+KD=4+5=9 Площадь параллелограмма равна произведению основания на высоту; BK*AD=12*9=108см^2
а) Если треугольник BKD прямоугольный, то мы можем применить к нему т. Пифагора: BK^2+KD^2=BD^2; BD^2=5^2+12^2=169; BD=кв.кор из 169=13 и по условию BD=13см, из этого следует что треугольник BKD-прямоугольный.
б) Мы доказали , то что треугольник BKD -прямоугольный с прямым углом K следственно треугольник ABK тоже прямоугольный. Площадь прямоугольного треугольника вычисляется по формуле S=1/2*Ak*BK=1/2*4*12=24см^2
AD=AK+KD=4+5=9 Площадь параллелограмма равна произведению основания на высоту; BK*AD=12*9=108см^2
<ВАР=30⁰, <APB = 60⁰ в треугольнике АВР. Смежный угол <APC=120⁰
Треугольник АРС - равнобедренный (АР=РС по доказанному), РО - высота, медиана, биссектриса, т.е. <АРО=<СРО=60⁰, <РАО=30⁰ (сумма углов треугольника равна 180⁰)
<ВАД=90⁰, <ВАР=30⁰, <РАС=30⁰ <ОАТ=90-(30+30)=30⁰, значит <РАТ=60⁹
Получили, треугольник АРТ - равносторонний, т.к. <P=<A=<t=60⁰
Значит, РТ=АР=АТ=8см, Р(АРСТ)=8*4=32(см)
ответ:32см