Четырехугольника ABCD является диаметром описанной около него окружности. Найдите углы данного четырехугольника, если известно, что дуга ВС=114, а 2CAD=59.
68 ( сумма углов 1 и 3 ) и полученное число поделить на 2 => (360 - 68)/2 = 146. Т.к. углы 2 и 4 равны, то они равны 146, и углы 1 и 3 равны и равны 34. ответ: 146 и 34 градуса
3) Пусть угол 1 - x, а угол 2 - 4x
Т.к. сумма смежных углов равна 180 градусам, то составим уравнение:
1. В тексте исправил вопрос на "найти длину проекции наклонной", а то получается , что искать нужно известную величину. Угол между наклонной и плоскостью - это угол между наклонной и ее проекцией на плоскость. Имеем прямоугольный треугольник: гипотенуза 8 см, один угол 60°. ВТОРОЙ ОСТРЫЙ 30°. Катет, лежащий против него равен половине гипотенузы, 8/2 = 4 см.Это проекция наклонной. Расстояние (это длина перпендикуляра) равно 4 * sin 60° = 2√3 см. 2. строим линейный угол двугранного угла и ставим размеры. Получаем прямоугольный треугольник с катетом 4 м и гипотенузой 8 м. Значит, угол равен 30°.
Объяснение:
1) т.к. это смежные углы, угол 2 = 180 - угол 1 = 180 - 150 = 30
ответ: 30 градусов
2) т.к. вертикальные углы равны ( угол 2 = углу 4 и угол 1 = углу 3 )
угол 1 = 34 => угол 3 равен 34, угол 2 = 360 ( сумма всех углов ) -
68 ( сумма углов 1 и 3 ) и полученное число поделить на 2 => (360 - 68)/2 = 146. Т.к. углы 2 и 4 равны, то они равны 146, и углы 1 и 3 равны и равны 34. ответ: 146 и 34 градуса
3) Пусть угол 1 - x, а угол 2 - 4x
Т.к. сумма смежных углов равна 180 градусам, то составим уравнение:
x + 4x = 180
5x = 180
x = 36 (угол 1) => 4x = 144
ответ: угол 1 = 36 градусам, а угол 2 = 144 градусам
P.S. Можешь отметить как лучший
Удачи)
Угол между наклонной и плоскостью - это угол между наклонной и ее проекцией на плоскость. Имеем прямоугольный треугольник: гипотенуза 8 см, один угол 60°. ВТОРОЙ ОСТРЫЙ 30°. Катет, лежащий против него равен половине гипотенузы, 8/2 = 4 см.Это проекция наклонной. Расстояние (это длина перпендикуляра) равно 4 * sin 60° = 2√3 см.
2. строим линейный угол двугранного угла и ставим размеры. Получаем прямоугольный треугольник с катетом 4 м и гипотенузой 8 м. Значит, угол равен 30°.