Пусть данный треугольник ABC, в нем опущены высоты AK и BN, ортоцентр - O. Нарисуем точку, симметричную O относительно BC: продолжим OK на отрезок, равный OK, за точку K. Обозначим полученную точку L. Теперь необходимо доказать, что ablc - вписанный пусть ∠obk = a Δobl - равнобедренный, тк bk - высота и медиана => ∠kbl = ∠obk = a из Δbnc ∠nbc = 90 - ∠bcn из Δakc ∠kac = 90 - ∠kcn ∠kcn и ∠bcn - один и тот же угол => ∠kac = ∠nbc = a ∠lac = ∠cbl = a => они опираются на одну дугу и ablc - описанный => точка l - лежит на окружности, описанной около abc. оставшиеся 2 точки доказываются абсолютно аналогично
Задание 5-9 геометрия 5+3 б через концы хорды АВ, равной радиусу окружности, проведены две касательные, пересекающиеся в точке С. Найдите угол АСВ. Nadinbdjdf 10.04.2012 Попросите больше объяснений Следить Отметить нарушение! ответы и объяснения ответы и объяснения 1
Лучший ответ! Djamik123 ученый ответил 10.04.2012 соединим хорду АВ с радиусом..получается равносторонний треугольник , углы в нем равны = 60 градусов..
значит угол АОВ = 60 градусов..проведем касательные..из четырехугольник известны два угла по 90 градусов в точке касания касательных..
Нарисуем точку, симметричную O относительно BC:
продолжим OK на отрезок, равный OK, за точку K. Обозначим полученную точку L.
Теперь необходимо доказать, что ablc - вписанный
пусть ∠obk = a
Δobl - равнобедренный, тк bk - высота и медиана =>
∠kbl = ∠obk = a
из Δbnc ∠nbc = 90 - ∠bcn
из Δakc ∠kac = 90 - ∠kcn
∠kcn и ∠bcn - один и тот же угол => ∠kac = ∠nbc = a
∠lac = ∠cbl = a => они опираются на одну дугу и ablc - описанный => точка l - лежит на окружности, описанной около abc.
оставшиеся 2 точки доказываются абсолютно аналогично
5-9 геометрия 5+3 б
через концы хорды АВ, равной радиусу окружности, проведены две касательные, пересекающиеся в точке С. Найдите угол АСВ.
Nadinbdjdf 10.04.2012
Попросите больше объяснений Следить Отметить нарушение!
ответы и объяснения
ответы и объяснения
1
Лучший ответ!
Djamik123 ученый ответил 10.04.2012
соединим хорду АВ с радиусом..получается равносторонний треугольник , углы в нем равны = 60 градусов..
значит угол АОВ = 60 градусов..проведем касательные..из четырехугольник известны два угла по 90 градусов в точке касания касательных..
угол АОВ + 90 + 90 + АСВ = 360, х = 360 - 90 - 90 - 60 = 120 градусов