Смотрите как легко понять, что за сечение. Раз плоскость сечения II A1D, то и прямые, которые образуются при пересечении этой плоскостью граней AA1D1D и BB1C1C, тоже будут параллельны A1D.
А1D лежит в плоскости AA1D1D, и указать прямую в этой плоскости II A1D, проходящую через середину AD очень легко - это прямая, проходящая через середины AD и АА1 (средняя линяя треугольника АА1D). Если обозначить M - середина AD и K - середина АА1, то это отрезок МК.
Что же касается плоскости BB1C1C, то тут еще проще - прямая II A1D и проходящая через точку С - это диагональ B1C.
Таким образом, сечение - это равноберенная трапеция МКВ1С, причем
B1C = a*√2; МК = В1С/2 = a*√2/2; MC = KB1 = a*√5/2; (МС - гипотенуза в прямоугольном треугольнике MDC с катетами a и a/2);
Осталось найти высоту этой трепеции.
(нарисуйте её отдельно "на плоскости", проставьте размеры)
Проще всего продлить боковые стороны до пересечения. Верхнее основание в получившемся равнобедренном треугольнике будет средней линеей, и искомая высота будет равна половине высоты этого треугольника к основанию B1C. Боковая сторона его равна 2*МС = a*√5, половина основания равна a*√2/2, и высота треугольника a*√(5 - 1/2) = a*3*√2/2; то есть высота трапеции a*3*√2/4;
Площадь МКВ1С равна S = (a*3*√2/4)*(a*√2 + a*√2/2)/2 = a^2*9/8;
Остюда получается очень интересное следствие. Дело в том, что проекцией этого сечения на ABCD является трапеция AMBC, площадь которой S1= a^2*3/4;
Поэтому, если обозначить Ф линейный угол двугранного угла между плоскостями сечения и боковой грани ABDC, то cos(Ф) = S1/S = 2/3; этот результат можно было бы получить другим путем - достаточно найти расстояние от В до МС, оно равно a*2/√5, откуда сразу расстояние от В1 до МС равно a*3/√5, и cos(Ф) = 2/3. Это было бы другим вычисления площади S, поскольку S1 считается элементарно, а S = S1/cos(Ф); попробуйте разобраться:).
Диагонали ромба относяться в соотношении 3 к 4,тогда, пусть одна диагональ 3х,вторая 4х...диагонали ромба точкой пересечения деляться пополам, тогда расмотрим один из четырёх,образовавшихся прямоугольных треугольников, одна из сторон,которого равна 2х,вторая 1,5х...
тогда по теореме Пифагора найдём третью сторону,которая является гипотенузой, и получим, что третья сторона(в квадрате) = (2х)в квадрате+(1,5)в квадрате,
раскрываем скобки и получаем, третья сторона в квадрате=4х квадрат+2,25х квадра=6,25х (квадрат)
третья сторона равна корню из 6,25 х(квадрат)
третья сторона равна 2,5 х...
периметр ромба-это сумма всех сторон,т.е. 2,5х*4=120,10х=120,отсюда следует, что х равен 12,тогда одна диагональ равна 4х=4*12=48,а вторая 3х=3*12=36
Не через прямую С, а через точку С.
Смотрите как легко понять, что за сечение. Раз плоскость сечения II A1D, то и прямые, которые образуются при пересечении этой плоскостью граней AA1D1D и BB1C1C, тоже будут параллельны A1D.
А1D лежит в плоскости AA1D1D, и указать прямую в этой плоскости II A1D, проходящую через середину AD очень легко - это прямая, проходящая через середины AD и АА1 (средняя линяя треугольника АА1D). Если обозначить M - середина AD и K - середина АА1, то это отрезок МК.
Что же касается плоскости BB1C1C, то тут еще проще - прямая II A1D и проходящая через точку С - это диагональ B1C.
Таким образом, сечение - это равноберенная трапеция МКВ1С, причем
B1C = a*√2; МК = В1С/2 = a*√2/2; MC = KB1 = a*√5/2; (МС - гипотенуза в прямоугольном треугольнике MDC с катетами a и a/2);
Осталось найти высоту этой трепеции.
(нарисуйте её отдельно "на плоскости", проставьте размеры)
Проще всего продлить боковые стороны до пересечения. Верхнее основание в получившемся равнобедренном треугольнике будет средней линеей, и искомая высота будет равна половине высоты этого треугольника к основанию B1C. Боковая сторона его равна 2*МС = a*√5, половина основания равна a*√2/2, и высота треугольника a*√(5 - 1/2) = a*3*√2/2; то есть высота трапеции a*3*√2/4;
Площадь МКВ1С равна S = (a*3*√2/4)*(a*√2 + a*√2/2)/2 = a^2*9/8;
Остюда получается очень интересное следствие. Дело в том, что проекцией этого сечения на ABCD является трапеция AMBC, площадь которой S1= a^2*3/4;
Поэтому, если обозначить Ф линейный угол двугранного угла между плоскостями сечения и боковой грани ABDC, то cos(Ф) = S1/S = 2/3; этот результат можно было бы получить другим путем - достаточно найти расстояние от В до МС, оно равно a*2/√5, откуда сразу расстояние от В1 до МС равно a*3/√5, и cos(Ф) = 2/3. Это было бы другим вычисления площади S, поскольку S1 считается элементарно, а S = S1/cos(Ф); попробуйте разобраться:).
Диагонали ромба относяться в соотношении 3 к 4,тогда, пусть одна диагональ 3х,вторая 4х...диагонали ромба точкой пересечения деляться пополам, тогда расмотрим один из четырёх,образовавшихся прямоугольных треугольников, одна из сторон,которого равна 2х,вторая 1,5х...
тогда по теореме Пифагора найдём третью сторону,которая является гипотенузой, и получим, что третья сторона(в квадрате) = (2х)в квадрате+(1,5)в квадрате,
раскрываем скобки и получаем, третья сторона в квадрате=4х квадрат+2,25х квадра=6,25х (квадрат)
третья сторона равна корню из 6,25 х(квадрат)
третья сторона равна 2,5 х...
периметр ромба-это сумма всех сторон,т.е. 2,5х*4=120,10х=120,отсюда следует, что х равен 12,тогда одна диагональ равна 4х=4*12=48,а вторая 3х=3*12=36