Дано:
ABCD – прямоугольник;
АL – биссектриса угла BAD;
ВL=3 см;
LC=4 см.
Найти:
Р(ABCD)
Так как противоположные стороны прямоугольника паралельны, то AD//BC.
Следовательно угол ALB=угол DAL как накрест-лежащие при параллельных прямых AD u BC и секущей AL.
Угол BAL=угол DAL, так как AL – биссектриса угла BAD.
Исходя из найденного: угол ALB=угол BAL.
Тогда ∆ABL – равнобедренный с основанием AL. Следовательно АВ=BL=3 см.
Периметр прямоугольника можно найти по формуле:
Р=2*(а+б), где а и б – смежные стороны.
Тогда Р(АВСD)=2*(AB+BC)=2*(AB+BL+LC)=2*(3+3+4)=2*10=20 см.
ответ: 20 см.
Дано:
ABCD – прямоугольник;
АL – биссектриса угла BAD;
ВL=3 см;
LC=4 см.
Найти:
Р(ABCD)
Так как противоположные стороны прямоугольника паралельны, то AD//BC.
Следовательно угол ALB=угол DAL как накрест-лежащие при параллельных прямых AD u BC и секущей AL.
Угол BAL=угол DAL, так как AL – биссектриса угла BAD.
Исходя из найденного: угол ALB=угол BAL.
Тогда ∆ABL – равнобедренный с основанием AL. Следовательно АВ=BL=3 см.
Периметр прямоугольника можно найти по формуле:
Р=2*(а+б), где а и б – смежные стороны.
Тогда Р(АВСD)=2*(AB+BC)=2*(AB+BL+LC)=2*(3+3+4)=2*10=20 см.
ответ: 20 см.
8х + 4у +3 = 0
4у = - 8х - 3
у= (-8х - 3)/ 4
у= 1/4 * (-8х - 3)
у= - 2х - 3/4
у= -2х - 0,75
Из заданного уравнения можно взять угловой коэффициент:
k₁ = -2
Из условия перпендикулярности прямых можно найти угловой коэффициент перпендикулярной прямой :
k₁ k₂ = - 1 ⇒ k₂ = - 1/k₁ = - 1/(-2) = 1/2 = 0.5
Теперь берем уравнение прямой с угловым коэффициентом
(у - у₀ = k(x-x₀) ) и подставляем координаты точки А (6 ; 0,5)
у - 0,5 = 0,5 (х - 6)
у = 0,5х - 3 + 0,5
у= 0,5х - 2,5 -уравнение прямой.
(или у- 0,5х + 2,5 = 0 ⇒ 2у -х + 5 = 0)