Противолежащие стороны параллелограмма равны. Противолежащие углы параллелограмма равны (так как у равных треугольников соответственные углы равны) . ДОКАЗАТЕЛЬСТВО: Проведя диагональ BD, мы получим два треугольника ABC и BCD, которые равны, так как у них BD - общая сторона, Р1=Р4 и Р2=Р3 (как накрест лежащие при параллельных прямых). Из равенства треугольников следует равенство противоположных сторон и углов. 2) Противоположные стороны попарно равны: AB = CD, AD = BC.
1.Проведем диагональ АС.
2.Рассмотрим треугольник АВС и треугольник СDA.
a) АС-общая.
б) угол 1=угол 2 (как накрест лежащие при ВС||АD и секущей АС)
в) угол 2= угол 4 (как накрест лежащие при АВ||СD и секущей АС)
Значит, треугольник АВС=СDA по двум углам и прилежащим им сторонам.
3. Из пункта 2 следовательно угол В=угол D.
4.так как угол 1=угол 2 и угол 3= угол 4 следовательно угол 1+угол 3= угол 2+угол 4 следовательно треугольник ВАD=ВСА.
чтд.
Объяснение:
Где я написала слово треугольник, обозначьте знаком треугольника, а там где написала угол, знаком угла.
Противолежащие стороны параллелограмма равны. Противолежащие углы параллелограмма равны (так как у равных треугольников соответственные углы равны) . ДОКАЗАТЕЛЬСТВО: Проведя диагональ BD, мы получим два треугольника ABC и BCD, которые равны, так как у них BD - общая сторона, Р1=Р4 и Р2=Р3 (как накрест лежащие при параллельных прямых). Из равенства треугольников следует равенство противоположных сторон и углов. 2) Противоположные стороны попарно равны: AB = CD, AD = BC.
Противоположные углы попарно равны: ∠A = ∠C, ∠B = ∠D.
Диагонали делятся в точке их пересечения пополам: AO = OC, BO = OD.
Сумма соседних углов равна 180 градусов: ∠A + ∠B = 180, ∠B + ∠C = 180, ∠C + ∠D = 180, ∠D + ∠A = 180.
Объяснение:
не краткий ответ, но ты можешь выделить главное