У вас получается 2 треугольника А1 К В1 и А2 К В2 Они подобны тк соотв признакам подобия, то есть имеют по паре одинаковых углов, в вашем случае можно сразу сказать. , что все углы равны, при К один для обоих треугольников и между прямой (любой из двух) из точки К и линиями соединяющими (А1В1 и А2В2) точки пересечения плоскостей, поскольку плоскости параллельны. Линии А1В1 и А2В2 так же параллельны. (см параллельность плоскостей) A2B2 относится к A1B1, как 9 к 4, значит и другие стороны этих треугольников относятся друг к другу так же. КВ1=8, значит КВ2 =8* 9/4= 18см
Надеюсь ничего не перепутал :) Изучалось очень давно!)
1) Рассмотрим △ABC и △AFE. У них один угол общий (<BAC=<FAE), и два угла равны по 90°, значит эти тр-ки подобны по двум углам.
Запишем для них пропорции:
AB/AE=BC/FE
AB=AE*BC/FE=10*12/6=20см
2) Если принять, что в задаче есть условие MN ll AC, то решается так:
Рассмотрим △ABC и △MBN. У них один угол общий, (<ABC=<MBC), а например <BAC=<BMN как соответственные углы при пересечении двух параллельных прямых MN и AC секущей AB. => △ABC и △MBN подобны.
AB=AM+MB=6+8=14см
Для подобных тр-ков △ABC и △MBN запишем пропорции:
Они подобны тк соотв признакам подобия, то есть имеют по паре одинаковых углов, в вашем случае можно сразу сказать. , что все углы равны, при К один для обоих треугольников и между прямой (любой из двух) из точки К и линиями соединяющими (А1В1 и А2В2) точки пересечения плоскостей, поскольку плоскости параллельны. Линии А1В1 и А2В2 так же параллельны. (см параллельность плоскостей)
A2B2 относится к A1B1, как 9 к 4, значит и другие стороны этих треугольников относятся друг к другу так же.
КВ1=8, значит КВ2 =8* 9/4= 18см
Надеюсь ничего не перепутал :) Изучалось очень давно!)
ответ:ответ:В1В2= КВ2-КВ1 = 18-8=10см
1) AB=20см 2) MN=12см
Объяснение:
1) Рассмотрим △ABC и △AFE. У них один угол общий (<BAC=<FAE), и два угла равны по 90°, значит эти тр-ки подобны по двум углам.
Запишем для них пропорции:
AB/AE=BC/FE
AB=AE*BC/FE=10*12/6=20см
2) Если принять, что в задаче есть условие MN ll AC, то решается так:
Рассмотрим △ABC и △MBN. У них один угол общий, (<ABC=<MBC), а например <BAC=<BMN как соответственные углы при пересечении двух параллельных прямых MN и AC секущей AB. => △ABC и △MBN подобны.
AB=AM+MB=6+8=14см
Для подобных тр-ков △ABC и △MBN запишем пропорции:
MN/AC=MB/AB
MN=AC*MB/AB=21*8/14=12см