По свойствам касательных к окружности мы знаем, что АВ=ВС. Посмотрим на треуг. АВС: он равнобедренный и прямоугольный, значит АК - высота и бессиктриса => ∠ВАК=∠САК=45 градусов.
Рассмотрим треуг. АСО: угол С=90 градусов(т.к. радиус перпендикулярен касательной), угол СОА=180-90-45=45 градусов, значит, треугольник АСО - равнобедренный и АС=СО, а СО=ВО=R.
Рассмотрим четырехугольник АВОС: все стороны равны, ∠А=90 градусов, ∠В=90 градусов, ∠С=90 градусов, значит ∠О=90 градусов => АВОС-квадрат => АО=ВС=10 см.
Вуаля;) Прикрепила картинку из интернета и нарисовала свою, чтобы понятнее было))) Удачи)
ответ: 10 см.
Даны вершины пирамиды: А(21;0;0), В(42;0;0), С(21;-21;0), D(21;21;21).
Как видим, точки А, В и С находятся все в одной плоскости хОу.
Поэтому ответ на вопрос высоты ДД1 решается легко: эта высота равна координате точки Д по оси Oz,то есть 21.
Для определения высоты СС1 надо определить объём пирамиды и площадь грани АВД.
1. Находим координаты векторов.
Вектор АВ={xB-xA, yB-yA, zB-zA} 21 0 0
Вектор АC={xC-xA, yC-yA, zC-zA} 0 -21 0
Вектор АD={xD-xA, yD-yA, zD-zA} 0 21 21.
Объем пирамиды равен смешанному произведению векторов:
(AB{x1, y1, z1} ; AC{x2, y2, z2} ; AD{x3, y3, z3})= x3·a1+y3·a2+z3·a3.
Произведение векторов
a × b = {aybz - azby; azbx - axbz; axby - aybx}.
Подставив значения координат векторов, получаем:
2. Площади граней
a1 a2 a3 S =
ABC [AB ; AC]= 0 0 -441 220,5
АВD [AB ; AD]= 0 441 441 311,8341
3. Объем пирамиды
x y z
AB*AC 0 0 -441
AD 0 21 21
Произвед 0 0 -9261
V = (1/6) * 9261 = 1543,5.
Отсюда находим высоту СС1.
СС1 = 3V/S(ABD) = (3*9261/6)/311,8341 = 14,8492.
По свойствам касательных к окружности мы знаем, что АВ=ВС. Посмотрим на треуг. АВС: он равнобедренный и прямоугольный, значит АК - высота и бессиктриса => ∠ВАК=∠САК=45 градусов.
Рассмотрим треуг. АСО: угол С=90 градусов(т.к. радиус перпендикулярен касательной), угол СОА=180-90-45=45 градусов, значит, треугольник АСО - равнобедренный и АС=СО, а СО=ВО=R.
Рассмотрим четырехугольник АВОС: все стороны равны, ∠А=90 градусов, ∠В=90 градусов, ∠С=90 градусов, значит ∠О=90 градусов => АВОС-квадрат => АО=ВС=10 см.
Вуаля;) Прикрепила картинку из интернета и нарисовала свою, чтобы понятнее было))) Удачи)
ответ: 10 см.
Даны вершины пирамиды: А(21;0;0), В(42;0;0), С(21;-21;0), D(21;21;21).
Как видим, точки А, В и С находятся все в одной плоскости хОу.
Поэтому ответ на вопрос высоты ДД1 решается легко: эта высота равна координате точки Д по оси Oz,то есть 21.
Для определения высоты СС1 надо определить объём пирамиды и площадь грани АВД.
1. Находим координаты векторов.
Вектор АВ={xB-xA, yB-yA, zB-zA} 21 0 0
Вектор АC={xC-xA, yC-yA, zC-zA} 0 -21 0
Вектор АD={xD-xA, yD-yA, zD-zA} 0 21 21.
Объем пирамиды равен смешанному произведению векторов:
(AB{x1, y1, z1} ; AC{x2, y2, z2} ; AD{x3, y3, z3})= x3·a1+y3·a2+z3·a3.
Произведение векторов
a × b = {aybz - azby; azbx - axbz; axby - aybx}.
Подставив значения координат векторов, получаем:
2. Площади граней
a1 a2 a3 S =
ABC [AB ; AC]= 0 0 -441 220,5
АВD [AB ; AD]= 0 441 441 311,8341
3. Объем пирамиды
x y z
AB*AC 0 0 -441
AD 0 21 21
Произвед 0 0 -9261
V = (1/6) * 9261 = 1543,5.
Отсюда находим высоту СС1.
СС1 = 3V/S(ABD) = (3*9261/6)/311,8341 = 14,8492.