Диссимиля́ция (от лат. dis- — приставка, означающая разделение, отрицание («раз/рас») и similis «подобный», то есть «расподобление», «расхождение») — в фонетике и фонологии под диссимиляцией понимают процесс обратный ассимиляции, то есть два или более одинаковых или близких по типу звука расходятся в произношении всё дальше. В целом, диссимиляция выражается в замене одного из двух одинаковых или похожих (по месту образования) звуков другим, менее сходным по артикуляции с тем, который остался без изменений. Как феномен встречается несколько реже ассимиляции, хотя статистически её частотность варьирует в зависимости от конкретного языка.
a) В основании АВС проведём высоту АЕ ⊥ ВС. АЕ = 0,5а√3;
Опустим высоту SO на плоскость АВС.
Угол между прямой SA и плоскостью АВС есть угол SAO
b) В основании АВС проведём высоту BK ⊥ AС. BK = 0,5а√3;
Опустим высоту SO на плоскость АВС.
Проведём в грани SAC апофему SK = 0,5а√3
Угол между плоскостями SAC и АВС есть угол SKO между апофемой SK и высотой основания ВК как угол между двумя перпендикулярами, восставленными из точки К к линии пересечения АС плоскостей SAC и АВС
Поскольку тетраэдр правильный, то углы между любой боковой плоскостью и плоскостью основания равны между собой. И косинус между плоскостью SBC и плоскостью АВС равен 1/3.
Диссимиля́ция (от лат. dis- — приставка, означающая разделение, отрицание («раз/рас») и similis «подобный», то есть «расподобление», «расхождение») — в фонетике и фонологии под диссимиляцией понимают процесс обратный ассимиляции, то есть два или более одинаковых или близких по типу звука расходятся в произношении всё дальше. В целом, диссимиляция выражается в замене одного из двух одинаковых или похожих (по месту образования) звуков другим, менее сходным по артикуляции с тем, который остался без изменений. Как феномен встречается несколько реже ассимиляции, хотя статистически её частотность варьирует в зависимости от конкретного языка.
Объяснение:
Смотри прикреплённый рисунок.
Пусть а = 8 см - ребро тетраэдра
a) В основании АВС проведём высоту АЕ ⊥ ВС. АЕ = 0,5а√3;
Опустим высоту SO на плоскость АВС.
Угол между прямой SA и плоскостью АВС есть угол SAO
b) В основании АВС проведём высоту BK ⊥ AС. BK = 0,5а√3;
Опустим высоту SO на плоскость АВС.
Проведём в грани SAC апофему SK = 0,5а√3
Угол между плоскостями SAC и АВС есть угол SKO между апофемой SK и высотой основания ВК как угол между двумя перпендикулярами, восставленными из точки К к линии пересечения АС плоскостей SAC и АВС
Поскольку тетраэдр правильный, то углы между любой боковой плоскостью и плоскостью основания равны между собой. И косинус между плоскостью SBC и плоскостью АВС равен 1/3.