Classwork and homework Lesson 1 My favourite season Classicork 3a Work in pairs. Look, copy and complete. green play nice trees warm Winter Spring baby rainy animals green grass yard clean
Вершина квадрата,лежащая на ребре SC, равно удалена от рёбер SA (также и SB) и ВС, поэтому она лежит на биссектрисе угла CBS. Биссектриса делит противоположную сторону пропорционально прилегающим сторонам. 6 : 12 = 1 :2. Поэтому сторона SC разделится на 3 части: 1 часть ближе к стороне СВ -это (12/3)*1= 4. Это и есть длина стороны квадрата. Теперь переходим к диагонали этого квадрата. Один конец её находится на боковом ребре на расстоянии 1/3 его длины. Значит, и по высоте будет находиться на 1/3 высоты пирамиды. Вершина правильной пирамиды проецируется в точку пересечения медиан треугольника основания - это 2/3 высоты основания, считая от вершины. Высота основания h = 6*cos 30 = 6*(√3/2) = 3√3. 2/3 части её равны 3√3*2 / 3 = 2√3. Отсюда высота пирамиды H = √(12²-(2√3)²) = √(144-12) = √132 = =2√33 = 11,4891. Третья часть составит 2√3 / 3 = 3,82971. Боковая сторона проекции квадрата на основание равна: (2/2) / cos 30 = 1 /(√3/2) = 2 / √3 = 1,1547. Проекция диагонали равна √(4²+ 1.1547²) = √16+ 1,33333) = = √17,3333 = 4,16333. Тангенс угла наклона диагонали квадрата полученного сечения к основанию равен 3,82971 / 4,16333 = 0.91987. Угол равен arc tg 0.91987 = 0.74368 радиан = 42.6099 градуса.
Биссектриса делит противоположную сторону пропорционально прилегающим сторонам.
6 : 12 = 1 :2. Поэтому сторона SC разделится на 3 части: 1 часть ближе к стороне СВ -это (12/3)*1= 4.
Это и есть длина стороны квадрата.
Теперь переходим к диагонали этого квадрата.
Один конец её находится на боковом ребре на расстоянии 1/3 его длины. Значит, и по высоте будет находиться на 1/3 высоты пирамиды.
Вершина правильной пирамиды проецируется в точку пересечения медиан треугольника основания - это 2/3 высоты основания, считая от вершины.
Высота основания h = 6*cos 30 = 6*(√3/2) = 3√3.
2/3 части её равны 3√3*2 / 3 = 2√3.
Отсюда высота пирамиды H = √(12²-(2√3)²) = √(144-12) = √132 =
=2√33 = 11,4891.
Третья часть составит 2√3 / 3 = 3,82971.
Боковая сторона проекции квадрата на основание равна:
(2/2) / cos 30 = 1 /(√3/2) = 2 / √3 = 1,1547.
Проекция диагонали равна √(4²+ 1.1547²) = √16+ 1,33333) =
= √17,3333 = 4,16333.
Тангенс угла наклона диагонали квадрата полученного сечения к основанию равен 3,82971 / 4,16333 = 0.91987.
Угол равен arc tg 0.91987 = 0.74368 радиан = 42.6099 градуса.
Нужен единичный отрезок. Может быть получен делением отрезка по теореме Фалеса.
1) Гипотенуза треугольника с катетами 1 и 2 равна √5 (по теореме Пифагора)
2) Высота из прямого угла есть среднее пропорциональное проекций катетов на гипотенузу, h=√(AD*DB)
- достраиваем к отрезку AD=5 отрезок DB=1 на одной прямой
- строим окружность на гипотенузе AB
- строим перпендикуляр к AB из точки D
- пересечение перпендикуляра и окружности - C
Вписанный угол ACB - прямой, так как опирается на диаметр. CD - высота из прямого угла.
CD =√(AD*DB) =√(5*1) =√5