Діагоналі рівнобічної трапеції точкою перетину діляться у відношенні 3:5. Через вершини трапеції і цю точку проведено па паралельні прямі до перетину з площиною, що не має з трапецією
спільних точок. Довжини відрізків трьох з цих прямих – від вершини гострого кута та двох
наступних вершин тупих кутів трапеції – до площини відповідно дорівнюють 33, 24 і 17 см.
Обчислити довжину відрізків решти двох прямих.
Итак, по этому чертежу: большее основание DC = 32 см. Меньшее AB = 20 см. Меньшая сторона - та, что прилегает к прямым углам трапеции. Отрезок BE перпендикулярен DC и параллелен меньшей стороне трапеции AD, а следовательно, равен ей. AD = BE. То есть, мы получаем прямоугольный треугольник BCE, в котором нам известна длина гипотенузы BC = 15 см. Длину меньшего катета EC находим: DC - AB = 32 - 20 = 12 (см).
Тогда, по теореме Пифагора (BE я обозначила как x):
(см).
ответ: длина меньшей стороны прямоугольной трапеции ABCD равна 9 см.
Окружность называется вписанной в многоугольник, если стороны многоугольника являются для неё касательными.
Очевидно, что не во всякий многоугольник можно вписать окружность.
Но всякий многоугольник можно разделить на треугольники.
А площадь треугольника можно найти половиной произведения стороны на высоту, проведенную к ней.
S=0,5*h*a, где а - сторона треугольника, h- высота к ней.
Для многоугольника его площадь - сумма площадей всех треугольников, на которые его можно разделить:
S=S₁+S₂+ S₃ и т.д
Высоты треугольников, на которые можно разделить описанный многоугольник, равны радиусу вписанной окружности, так как радиус перпендикулярен касательной в точке касания. .
Тогда
S=0,5*a₁*r+0,5*a₂*r+0,5*a₃* r+0,5*a₄*r и т.д.
Вынесем общий множитель 0,5r за скобки⇒
S=r*0,5*(a₁+a₂+a₃+a₄+ an)
Ясно, что 0,5*(a₁+a₂+a₃+a₄+an) - это полупериметр многоугольника Теперь можно площадь многоугольника, в который вписана окружность, записать как
S=r*p, где r- радиус вписанной в многоугольник окружности, р- полупериметр этого многоугольника. Что и требовалось доказать.
-----
[email protected]