Как известно, в равнобедренном треугольнике попарно равны боковые стороны и углы при основании. Доказательство будем строить именно на этом.
Предположим, что тр-к ABC - равнобедренный
1) Проведём высоту AK к основанию BC. По св-ву равнобедр. тр., она будет также медианой и биссектрисой. Значит, тр-ки ABK b ACK будут равны по стороне и двум прилежащим углам (половины основания, углы при основании и два прямых угла).
2) Проведём высоты BM и CH к сторонам АС и АВ соответственно. Три высоты пересекутсся в точке О, и все они будут делиться по соотношению 2:1, считая от вершин. В 1 действии мы доказали, что тр. ABK и ACK равны. Значит, если высоты пересекаются в одной точке , лежащей на общей стороне AK этих двух треугольников, то отрезки высот - BO-OM и CO-OH будут равны (т.к. не смещена линия симметрии): BO=CO OM=OH
Если равны все отрезки высот, то буду равны и целые высоты: BM = CH, чтд.
Предположим, что тр-к ABC - равнобедренный
1) Проведём высоту AK к основанию BC. По св-ву равнобедр. тр., она будет также медианой и биссектрисой. Значит, тр-ки ABK b ACK будут равны по стороне и двум прилежащим углам (половины основания, углы при основании и два прямых угла).
2) Проведём высоты BM и CH к сторонам АС и АВ соответственно.
Три высоты пересекутсся в точке О, и все они будут делиться по соотношению 2:1, считая от вершин.
В 1 действии мы доказали, что тр. ABK и ACK равны. Значит, если высоты пересекаются в одной точке , лежащей на общей стороне AK этих двух треугольников, то отрезки высот - BO-OM и CO-OH будут равны (т.к. не смещена линия симметрии):
BO=CO
OM=OH
Если равны все отрезки высот, то буду равны и целые высоты:
BM = CH, чтд.
Всё!
ответ: ∠DBE=15*.
Объяснение:
"ABCD-это ромб, а точка E находится на стороне DC так, что(<BEC) = 55°. Если m(<A)=100°, найдите m(<DBE).
Треугольник DВЕ - равнобедренный (углы у основания равны).
∠А+∠ABD+∠BDA=180*;
∠DBA=∠BDA=(180*-100*)/2=40*;
***
В треугольнике BDE ∠BDE=40*, a ∠BED=180*-55*=125*.
Значит ∠DBE=180*-(40*+125*) =15*.
ответ: ∠DBE=15*.
***
На английском:
The triangle DBE is isosceles (the angles at the base are equal).
∠A+∠ABD+∠BDA=180*;
∠DBA=∠BDA=(180*-100*)/2=40*;
***
In the triangle BDE ∠BDE=40*, a ∠BED=180*-55*=125*.
Means ∠DBE=180*-(40*+125*) =15*.
Answer: ∠DBE=15*.