ответ: площадь прямоугольника увеличилась в 4 раза
Объяснение:
Пусть а - ширина изначального прямоугольника, b - его длина. Тогда площадь такого прямоугольника рассчитаем по формуле: S1 = ab.
Теперь увеличим ширину прямоугольника в 2 раза, получаем 2а. Его длину увеличим в 2 раза, получим 2b. Таким образом, площадь нового прямоугольника будет: S2 = 2a * 2b = 4ab.
Чтобы узнать во сколько раз увеличилась площадь прямоугольника после увеличения его длины и ширины, разделим большую площадь на меньшую:
S1/S2 =4ab/ab = 4.
ответ: площадь прямоугольника увеличилась в 4 раза
26 : 2 = 13 см - полупериметр его
(13 - х) см - вторая сторона параллелограмма
Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон:
Уравнение
7² + 11² = 2х² + 2 * (13 - х)²
49 + 121 = 2x² + 2 * (х² - 26х + 169 )
170 = 2 x² + 2x² - 52х + 338
4х² - 52х + 168 = 0
x² - 13x + 42 = 0
D = 13² - 4 * 1 * 42 = 169 - 168 = 1
√D = √1 = 1
x₁ = (13 + 1)/2 = 14/2=7см - одна сторона
x₂ = (13 - 1) /2 = 12/2 = 6см - одна сторона
13 - 7 = 6 см - другая сторона
13 - 6 = 7 см - другая сторона
Длины сторон взаимозаменяемы 6см и 7 см или 7см и 6см
ответ: 6см ;7 см; 6см; 7см
ответ: площадь прямоугольника увеличилась в 4 раза
Объяснение:
Пусть а - ширина изначального прямоугольника, b - его длина. Тогда площадь такого прямоугольника рассчитаем по формуле: S1 = ab.
Теперь увеличим ширину прямоугольника в 2 раза, получаем 2а. Его длину увеличим в 2 раза, получим 2b. Таким образом, площадь нового прямоугольника будет: S2 = 2a * 2b = 4ab.
Чтобы узнать во сколько раз увеличилась площадь прямоугольника после увеличения его длины и ширины, разделим большую площадь на меньшую:
S1/S2 =4ab/ab = 4.
ответ: площадь прямоугольника увеличилась в 4 раза