Даны два равнобедренных треугольника. У каждого из вершины к основанию проведена медиана, которая в свою очередь, в равнобедренных треугольниках, является и биссектрисой и высотой. Поэтому каждый наш равнобедренный треугольник (и первый и второй) делятся медианой два одинаковых прямоугольных треугольника (они равны по двум сторонам - высоте и боковой стороне - и углу между ними). Если мы докажем, что один прямоугольный треугольник нашего первого равнобедренного треугольника равен прямоугольному треугольнику второго нашего равнобедренного треугольника, то докажем равенство равнобедренных треугольников с одинаковой медианой и одинаковым углом при вершине. Итак, у обоих треугольников равны высоты (наша медиана), равны прилегающие к высоте углы, один из которых прямой, другой равен половинке угла при вершине. А эти углы равны, т.к. одинаковые углы при вершине делятся биссектрисой пополам. Отсюда, наши равнобедренные треугольники равны по стороне и двум прилегающим углам.
Если мы докажем, что один прямоугольный треугольник нашего первого равнобедренного треугольника равен прямоугольному треугольнику второго нашего равнобедренного треугольника, то докажем равенство равнобедренных треугольников с одинаковой медианой и одинаковым углом при вершине.
Итак, у обоих треугольников равны высоты (наша медиана), равны прилегающие к высоте углы, один из которых прямой, другой равен половинке угла при вершине. А эти углы равны, т.к. одинаковые углы при вершине делятся биссектрисой пополам. Отсюда, наши равнобедренные треугольники равны по стороне и двум прилегающим углам.
Відповідь:
Нехай ∆АВС - даний рівнобедрений трикутник (АВ = ВС).
AD - висота, АК - бісектриса, ∟KAD = 15°.
Знайдемо кути ∆АВС.
Розглянемо ∆AKD.
∟ADK = 90°, ∟AKD = 90° - ∟KAD,
∟AKD = 90° - 15° = 75°. ∟BKA + ∟AKD = 180° (як суміжні).
∟BKA = 180° - 75° = 105°.
Нехай ∟BAK = ∟KAC = х (АК - бісектриса). ∟BAC = 2х.
3 ∆ВАК: ∟B = 180° - (∟BAK + ∟BKA),
∟B = 180° - (х + 105°) = 180° - х - 105° = 75° - х.
Розглянемо ∆АВС.
∟A = ∟C = 2х (∆АВС - рівнобедрений).
∟A + ∟C + ∟B = 180°, 2х + 2х + 75 - х = 180; 3х = 105; х = 35.
∟A = ∟C = 2 • 35° = 70°, ∟B = 75° - 35° = 40°.
Дана задача має один розв'язок, так як висота i бісектриса, проведені
з вершини рівнобедреного трикутника до основи співпадаютъ, а за умо-
вою кут між ними 15°.
Пояснення: