Определить взаимное расположение прямой окружности если:1-R=16 см, D=22 см, 2) R=5 см, d=4см, 3)R=7,2 дм, d=1,7 дм, 4)R=5 см, d=1,2 дм, 5)R=6 см, d=60 мм
1 у них один угол напротив лежащий и две стороны одинаковые , всё они подобны по одному углу и двум сторонам
3 там не всё видно но я предпологаю что там ещё одни углы равны поэтому треугольники равны по стороне и двум углам т к снизу два угла равны одни из сторон равны и тот угл
4 одни из сторон равны и равны одни углы и т к это параллелограмм то у них противоположные углы равны поэтому эти треугольники равны по одной стороне и двум углам
11 там вообще легко даётся что две стороны равны осталось найти угл между ними и их можно найти 180градусов - те углы которые на плоскости и всё и треугольники равны по двум сторонам и углу между ними
См. рисунок Чтобы построить угол между плоскостью сечения и плоскостью основания проводим перпендикуляры к линии пересечения этих плоскостей- отрезку BD. СК ⊥BD C₁K⊥BD ∠С₁КС=60° ΔС₁КС- прямоугольный, поэтому ∠КС₁С=30° В прямоугольном треугольнике катет против угла в 30° равен половине гипотенузы. Значит С₁К=2·СК СК- высота прямоугольного треугольника ВСD Рассмотрим ΔВСD По теореме Пифагора BD²=BC²+CD²=6²+8²=100 BD=10 С одной стороны площадь прямоугольного треугольника равна половине произведения основания BD на высоту CK C другой- площадь прямоугольного трегольника равна половине произведения катетов. Приравниваем правые части ВС·СD/2=BD·CK/2 ⇒ СК= ВС·CD/BD=6·8/10=4,8
1 у них один угол напротив лежащий и две стороны одинаковые , всё они подобны по одному углу и двум сторонам
3 там не всё видно но я предпологаю что там ещё одни углы равны поэтому треугольники равны по стороне и двум углам т к снизу два угла равны одни из сторон равны и тот угл
4 одни из сторон равны и равны одни углы и т к это параллелограмм то у них противоположные углы равны поэтому эти треугольники равны по одной стороне и двум углам
11 там вообще легко даётся что две стороны равны осталось найти угл между ними и их можно найти 180градусов - те углы которые на плоскости и всё и треугольники равны по двум сторонам и углу между ними
Чтобы построить угол между плоскостью сечения и плоскостью основания проводим перпендикуляры к линии пересечения этих плоскостей- отрезку BD.
СК ⊥BD
C₁K⊥BD
∠С₁КС=60°
ΔС₁КС- прямоугольный, поэтому ∠КС₁С=30°
В прямоугольном треугольнике катет против угла в 30° равен половине гипотенузы.
Значит
С₁К=2·СК
СК- высота прямоугольного треугольника ВСD
Рассмотрим ΔВСD
По теореме Пифагора
BD²=BC²+CD²=6²+8²=100
BD=10
С одной стороны площадь прямоугольного треугольника равна половине произведения основания BD на высоту CK
C другой- площадь прямоугольного трегольника равна половине произведения катетов.
Приравниваем правые части
ВС·СD/2=BD·CK/2 ⇒ СК= ВС·CD/BD=6·8/10=4,8
C₁K=9,6
S(ΔВС₁D)=BD·C₁K/2=10·9,6/2=48 кв. см