1.По теореме Пифогора находим: Гипотенуза в кв=(15*15)+(3*3) Гипотенуза в кв=225+9 Гипотенуза в кв=234 Гипотенуза=3√26
S=(15*3)/2=45/2=22,5
2.S=(15*12)/2=180/2=90
Для того,чтобы найти Р ,сначала нужно найти сторону ромба. Итак, у ромба диагонали перпендикулярны и точкой пересечения делятся пополам. В итоге получаются четыре прямоугольных треугольника. Нам понадобится только одна. Итак,обозначим треугольник ACB,где угол С=90, АС=7,5; СВ=6. Тогда,по тереме Пифагора: АВ в кв=(7,5*7,5)+(6*6) АВ в кв=56,25+36 АВ в кв=92,25 АВ=15√41
Гипотенуза в кв=(15*15)+(3*3)
Гипотенуза в кв=225+9
Гипотенуза в кв=234
Гипотенуза=3√26
S=(15*3)/2=45/2=22,5
2.S=(15*12)/2=180/2=90
Для того,чтобы найти Р ,сначала нужно найти сторону ромба. Итак, у ромба диагонали перпендикулярны и точкой пересечения делятся пополам. В итоге получаются четыре прямоугольных треугольника. Нам понадобится только одна. Итак,обозначим треугольник ACB,где угол С=90, АС=7,5; СВ=6. Тогда,по тереме Пифагора:
АВ в кв=(7,5*7,5)+(6*6)
АВ в кв=56,25+36
АВ в кв=92,25
АВ=15√41
Тогда Р=15√41*4=60√41
Для нахождения площади сегмента круга есть формула, - она дана в приложении, но мы можем вывести её сами, немного порассуждав.
Площадь круга S=πR²
Круг содержит 360° ⇒Площадь сектора круга в 1°=πR²:360
Площадь сектора с центральным углом α будет больше во столько раз, во сколько α больше 1.
Sсект=πR²•α:360°
Площадь сегмента АОС равна площади сектора АОС минус площадь треугольника АОС.
S ∆ AOC=AO•CO•sinα:2=R²•sinα:2 ( по одной из формул площади треугольника)
Вычитаем:
Sсегм. = πR²•α:360° - R²•sinα:2
Выносим за скобки R²1/2
Sсегм=R²•1/2•[(π•α:180°-sinα)]
Sсегм=(36:2)•[π•120°:180°-√3/2]
Sсегм=18•(3,14•120°:180°- √3/2)=18•[(3,14•2/3)-√3/2]
S сегм=18•(2,09- 0,866)= 18•1,224= ≈22,032 см²