1)Угол В равен 180 градусов - угол С - угол А = 180-90-60=30 градусов (по теореме о сумме углов треугольника)
2) Т.к АС лежит против угла В равного 30 градусам то АС=1/2АВ= 8СМ х 1/2= 4 см (по свойству прямоугольного треугольника)
ответ: 4 см.
Угол С = 90, угол А =60 следовательно угол В = 180 - (60+90)=30 градусов (по сумме углов треугольника) АВ - гипотенуза, угол А = 30 градусов следовательно АС = 1/2АВ (тк в прямоугольном треугольнике катет лежащий против угла в 30 градусов равен половине гипотенузы) Следовательно АС=1/2*8= 4 ответ 4
По формуле Герона расчитывается площадь S = 84, далее находится радиус вписаной окружности r = 2*S/P = 4 (P = 42 - периметр), ну, и поскольку проекция апофемы в данном случае и есть этот радиус, то высота пирамиды находится из прямоугольного треугольника, составленного апофемой, высотой пирамиды и радиусом вписанной в основание окружности. Угол в этом треугольнике и есть двугранный угол при боковом ребре и основании. Раз он 45 градусов, то H = r = 4
Более подробнае вычисления высоты в треугольнике со сторонами 13,14,15 можно найти
1)Угол В равен 180 градусов - угол С - угол А = 180-90-60=30 градусов (по теореме о сумме углов треугольника)
2) Т.к АС лежит против угла В равного 30 градусам то АС=1/2АВ= 8СМ х 1/2= 4 см (по свойству прямоугольного треугольника)
ответ: 4 см.
Угол С = 90, угол А =60 следовательно угол В = 180 - (60+90)=30 градусов (по сумме углов треугольника) АВ - гипотенуза, угол А = 30 градусов следовательно АС = 1/2АВ (тк в прямоугольном треугольнике катет лежащий против угла в 30 градусов равен половине гипотенузы) Следовательно АС=1/2*8= 4 ответ 4
По формуле Герона расчитывается площадь S = 84, далее находится радиус вписаной окружности r = 2*S/P = 4 (P = 42 - периметр), ну, и поскольку проекция апофемы в данном случае и есть этот радиус, то высота пирамиды находится из прямоугольного треугольника, составленного апофемой, высотой пирамиды и радиусом вписанной в основание окружности. Угол в этом треугольнике и есть двугранный угол при боковом ребре и основании. Раз он 45 градусов, то H = r = 4
Более подробнае вычисления высоты в треугольнике со сторонами 13,14,15 можно найти